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Abstract: This paper presents the use of Agent Based Modeling (ABM) technique as a tool for optimum resource 

constrained scheduling.  The model added two features to the standard resource scheduling applications. It allowed 

activity interruptions when necessary and the impact of the quality of the predecessors on the successors’ duration. 

An illustrative example is offered to demonstrate the performance of the proposed model. ABM technique was 

confirmed to be a valid approach for seeking alternative solutions in resource constrained schedules. The model 

proved advantageous to resource-constrained schedules. It illustrated additional flexibility to the standard 

techniques for resource-constrained problems. The model was proven successful in minimizing the project 

duration under preset priority rules.  
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1. Introduction

Ineffective project planning and scheduling is one of the main causes of project delays and budget overruns [1, 

2]. Therefore, improvements to planning and scheduling tools are crucial to the success of the construction industry. 

A project schedule is an exercise of mapping the project’s logic. It could be viewed as a unidirectional, fully 

connected graph of the activities defining the project [3]. A construction schedule is a series of tasks sequenced 

according to functional dependence, zone of work, or similar denominators.  

A project schedule is often resource-loaded and cost-loaded to further control the project’s progress and 

expenditures [3,4]. In developing a construction schedule, contractors frequently face resource shortages.  For this 

reason, research efforts have been lunched to determine optimum schedules under resource constraints conditions 

[5].  

This paper explores Agent Based Modeling (ABM) technique in developing resource constrained schedules.  It 

illustrates the use of ABM in what is traditionally referred to as the Resource-Constrained Project Scheduling 

Problem (RCPSP). The paper explains the use of ABM in creating Activity Agents, and examines the use of these 

Agents in a project schedule. The scope of this study involved the development of an Agent Based Model capable 

of predicting the impact of work interruptions due to resource shortages on the project duration, and of the impact 

of predecessors’ quality on the successors’ durations. The model was demonstrated using illustrative examples. 

2. Background

There are numerous techniques that have been employed to provide solutions for the RCPSPs. Branch and 

bound methods are a common solution to the problem [6-9]. More sophisticated methods include mathematical 

programming [4], genetic algorithms [10] and Ant Colony Optimization [3]. Other researchers utilized neural 

networks [11] and particle swarm optimization [12]. Knotts et al. [13]  introduced an agent-based system for project 

scheduling utilizing priority rules.  

The available methods could also be categorized according to their applicability and limitations in handling 

RCPSPs. Yang et al. [5] categorized these techniques as follows: 

1) Basic Single-Mode RCPSP

2) Basic Multi-Mode RCPSP

3) RCPSP problems with Non-regular objective functions

4) Stochastic RCPSP

5) Bin-packing-related RCPSP problems

6) Multi-resource-constrained project scheduling problems (MRCPSP)
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The work illustrated in this paper can be categorized as Basic Multi Mode RCPSP, and builds upon the concepts 

introduced by Knotts et al. [13] and adds a resource constrained dimension.  

 

3. Problem formulation 
 

The objective of the work presented here does not include searching for an optimal solution. However, all 

solutions that are produced by the model must be viable solutions. In order for a solution to be viable, it must fulfill 

the following: 

 

3.1 Satisfying relationship constraints 
All the standard predecessor-successor relationship are supported by the model. These relationships are listed 

and formalized as follows: 

Finish-to-start (FS) 

 

𝑇𝑛 + 𝑑𝑛 + 𝐿𝑛𝑛′ ≤ 𝑇𝑛′       𝑛
′𝜖 {𝑆𝑛}                                                                                                                        (1) 

 

Start to Start (SS) 

 

𝑇𝑛 + 𝐿𝑛𝑛′ ≤ 𝑇𝑛′       𝑛
′𝜖 {𝑆𝑛}                                                                                                                                  (2) 

 

Start to Finish (SF) 

 

𝑇𝑛 + 𝐿𝑛𝑛′ − 𝑑𝑛′ ≤ 𝑇𝑛′       𝑛
′𝜖 {𝑆𝑛}                                                                                                                        (3) 

 

Finish to Finish (FF) 

 

𝑇𝑛 + 𝑑𝑛 + 𝐿𝑛𝑛′− 𝑑𝑛′ ≤ 𝑇𝑛′       𝑛
′𝜖 {𝑆𝑛}                                                                                                                        (4) 

 

where 𝑇𝑛 is the start time of activity n; 𝑑𝑛 is the activity duration; 𝐿𝑛𝑛′ is the lag/lead time between activities n 

and n’; and 𝑇𝑛′ is the start time of the succeeding activity n’ and {𝑆𝑛} denotes the set of activities succeeding 

activity n. 

 

3.2 Recognizing Resource Constraints 
The following equation presents the formal inclusion of the possible resource constraints: 

 

∑ 𝑟𝑘𝑛𝑛∈{𝑆𝑡} ≤  𝑅𝑘𝑡                                                                                                                                                     (5) 

 

where {𝑆𝑡} is the set of activities in progress at time 𝑡 and 𝑅𝑘𝑡 is the number of type 𝑘 resources at time t. 

 

3.3 Ensuring Non-negativity Constraint 
The lags, durations, and resources are not allowed to have negative values. 

 

4. Problem formulation 
 

4.1 Model Architecture 
The model follows a modular architecture and object oriented programming. This allows other researchers to 

build on this work with minimum effort. 

 

4.2 Agent Overview 
An agent is an autonomous object that has the ability of satisfying internal goals [14]. Agents have a complex 

underlying functional architecture such as the belief-desire-intention (BDI) architecture [15]. The agents used in 

this model range from relatively simple agents to more complex. The following is a list of common agent types 

suggested by Sycara et al. [16]: 

1) Reactive agents: These agents simply react to a stimulus. Their reaction to the stimulus is predetermined by 

the developer. 

2) Adaptive agents: These agents are more sophisticated. They also react to stimulus, but their reaction may 

change over time. Generally this reaction is also predetermined, either through a set of rules or functions. 
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3) Goal oriented agents: These agents are similar to adaptive agents, but do not require a stimulus to act. These 

agents continuously seek their predetermined goal. The goal seeking method is typically predetermined either 

through rules or functions. This makes these agents relatively predictable, except if the goal seeking method 

involves learning. 

4) Learning agents: These agents can be reactive, adaptive or goal seeking. However, they are less predictable 

since their decision changes through their respective “experience”. The learning mechanism can be straight 

forward in which the agents “remembers” a given outcome and uses it in a current decision making. If the learning 

process is complex, the agent is considered intelligent. 

5) Intelligent agents: These agents are highly sophisticated agents. They can be reactive adaptive or goal 

seeking, as well as, having learning abilities. These agents are placed in their class because their decision making 

process involves complex algorithms, most of which fall under the umbrella of Artificial Intelligence. The model 

at hand does not contain this type of agent. 

It should be noted that the above list is not conclusive. These agents could be divided further. The list is simply 

meant to provide the context for the discussion presented below. It should also be noted that despite the type of 

agent, they are all supported by their own internal BDI nucleus. Figure 1 shows an activity state chart. 

 

 
Figure 1. Activity state chart 

 

5. Model components 
 

5.1 Critical path 
The model first computes the Critical Path values with no resource constraints. These values include Early Start, 

Early Finish, Late Start, Late Finish, and Total Float. 

 

5.2 Activity agent 
As explained earlier, the model is developed as an agent based model. Thus, agents are the main drivers of the 

simulation. Activities are not intelligent agents, and thus do not learn. They can be considered goal oriented 

reactive agents. 

The activity agent’s goal is to be completed. This is done by performing certain tasks for a given duration then 

concluding. In some cases the activity may be interrupted. The life of an activity can be translated to a state chart 

for coding purpose. 

All activities start in a “NotReady” state. Each activity then assesses whether its predecessors are complete or 

not. If they are completed, then the activity becomes “Ready”. Once resources for this activity are available, then 

the activity can start to become in an “InProgress” state. If the activity is interrupted for any reason, it moves to an 

“Inter” state. Once the activity is finished it is transformed to a “Complete” state. 

Activities that are ready compete for the available resources through preset priority rules. Three priority rules 

were coded into the model, namely, shortest remaining float, earliest early start, and latest late finish. More rules 

can be added in the future. The model allows the user to choose the priority rule to apply. The activity that is ready 

and has priority will then check if there are enough resources available for it. If there are enough resources the 

activity will commence.  Otherwise, the activity will remain “Ready”. 

The model also continues to assess the need for interruption. During the priority check, activities can be 

interrupted in favor of more ‘important’ activities. In this case, the state of the activity would switch to 

“Interrupted”.  

In addition to states, the activity agent contains a number of parameters such as: Predecessors, Duration, 

Resources, Interruptability, Quality, Early Start, Early Finish, Late Start, Late Finish, Total Float, Actual Start, 

and Actual Finish. These dates are calculated through the resource constrained ABM simulation. Quality refers to 
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the dependency on the predecessors’ quality. It is an input parameter that reflects whether the duration of an activity 

is affected by the finish quality of a predecessor. 

 

5.3 Duration object 
Duration was modeled as a separate object to allow the activity duration to be manipulated as an aggregate. For 

instance, the user may decide to apply a certain distribution that would calculate the duration given certain limits. 

This can be employed easily when durations are treated as a separate object. 

 

5.4. Resource pool 
The resource pool contains a number of resources as predefined by the user. Activities book these resources 

and the balance remains in the resource pool. 

 

5.5 Model flowchart 
Figure 2 depicts the model and the step-by-step process. 

 

 
Figure 2.  Concept flowchart 

 

6. Illustrative example 
 

Figure 3 is an example project offered by Maroto et al. (1994). This example project was used to illustrate the 

aspects of the ABM model, and to validate our results. Table 1 summarizes the project inputs. To simplify the 

tracking of the results, only finish-start relationships were used in the ABM model. However, the user has total 

freedom on specifying other relationships. 

 

6.1 Priority rules 
Three priority rules (i.e., earliest start date, latest finish date, and shortest total float) were implemented. Three 

different runs were performed, and each run used one of the priority rules (PR) as the BDI of the agents. The 

results are shown in Table 2. 

As shown in Table 2, each priority rule yielded a unique project duration (i.e., 183, 188, and 195). The three 

priority rules can be used as a preliminary step towards finding an optimum solution. However, the optimization 

of the solution is beyond the scope of this study. 
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Figure 3.  Project activities relationships 

 

Table 1. Project input data 

Activity ID Duration Resources 

1 5 8 

2 7 5 

3 2 8 

4 14 6 

5 1 4 

6 5 6 

7 3 8 

8 8 4 

9 20 2 

10 3 7 

11 4 5 

12 7 6 

13 6 4 

14 25 2 

15 4 8 

16 3 8 

17 8 4 

18 12 3 

19 5 5 

20 5 4 

21 8 7 

22 6 4 

23 4 8 

24 3 5 

25 5 3 

26 5 2 

27 3 4 

28 3 8 

29 20 4 

30 5 4 

31 11 4 
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Table 2. Results using different priority rules 

Activity CPM Calculations  Resource Constrained Schedule* Is the 

Activity 

Critical 
 Late Finish PR Early Start PR Total Float PR 

ES EF LS LF  AS AF AS AF AS AF  

0 0 0 0 0  0 0 0 0 0 0 Y 

1 0 5 2 7  0 5 0 5 7 12 N 

2 0 7 0 7  5 12 5 12 0 7 Y 

3 7 9 7 9  12 14 12 14 12 14 Y 

4 9 23 9 23  14 28 14 28 14 28 Y 

5 9 10 22 23  28 29 28 29 31 32 N 

6 9 14 18 23  29 34 29 34 39 44 N 

7 9 12 12 15  34 37 34 37 28 31 N 

8 12 20 15 23  37 45 37 45 31 39 N 

9 23 43 23 43  45 65 45 65 44 64 Y 

10 43 46 43 46  65 68 65 68 64 67 Y 

11 46 50 47 51  97 101 68 72 73 77 N 

12 46 53 49 56  68 75 72 79 87 94 N 

13 46 52 46 52  78 84 79 85 67 73 Y 

14 50 75 51 76  101 126 97 122 94 119 N 

15 50 54 72 76  126 130 122 126 150 154 N 

16 53 56 61 64  75 78 134 137 127 130 N 

17 53 61 56 64  78 86 79 87 119 127 N 

18 52 64 52 64  86 98 85 97 73 85 Y 

19 52 57 60 65  89 94 87 92 77 82 N 

20 52 57 60 65  84 89 92 97 82 87 N 

21 50 58 68 76  130 138 126 134 137 145 N 

22 75 81 76 82  138 144 144 150 154 160 N 

23 64 68 64 68  155 159 140 144 130 134 Y 

24 57 60 65 68  94 97 137 140 134 137 N 

25 81 86 82 87  144 149 155 160 160 165 N 

26 68 73 68 73  159 164 144 149 145 150 Y 

27 86 89 87 90  149 152 160 163 165 168 N 

28 89 92 90 93  152 155 169 172 174 177 N 

29 73 93 73 93  164 184 149 169 154 174 Y 

30 73 78 99 104  164 169 150 155 168 173 N 

31 93 104 93 104  184 195 172 183 177 188 Y 

*Resource pool set at 8 resources 

Figure 4 illustrates the total duration of the project given no resource constraints compared to a resource 

constrain of 8 resources under the three priority rules. 

It is worth noting that the above results are specific to this network and the preset resource constraints. Changes 

to the network or resource constraints may change the total duration and the ranking of the priority rules. 

Figure 5 (a-c) compares the resource profile under each priority rule to the resource profile of the non-

constrained schedule. 

Table 3 compares the results where all activities were allowed to be interrupted to that when no interruption 

was allowed. 

As can be seen in the Table, two activities benefitted from interruption. Allowing interruption resulted in 

shortening the project duration by 17 days. 

 

6.2 Impact of predecessor quality 
Figure 6 shows the project duration profile resulting from the impact of predecessors’ quality. Such impact is 

manifested as extra time added to the successor’s duration. The model allows the user to define the activities 

having quality issues that impacted the predecessor activity.  

It can be observed in Figure 6 that as the percentage of predecessors of lower quality increases the total project 

duration increases. The relation is expected to be non-linear and unique to a given set of activities. 
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Figure 4.  Duration for each priority rule 

 

(a) 

(b) 

(c) 

Figure 5. Resource profiles:  (a) late finish, (b) early start, (c) total float 

 

 

Figure 6. Impact of quality reduction 

 

31

A. Senouci et al. Journal of Civil Engineering and Construction 2019;8(1):25-33



 

7. Conclusion 
 

The agent based model presented was capable of predicting the total project duration under three priority rules. 

The model also made decisions on whether or not to interrupt activities based on the user’s input. In addition, the 

model incorporated the impact of poor quality of the predecessors on the successor’s duration.  

Agent based modeling proved advantageous to resource-constrained schedules. The model illustrated additional 

flexibility to the standard techniques for resource-constrained problems. Suggestions for future work include 

adding the impact of the trades’ skill level and complexity of tasks as attributes to the project activities and 

resources. 

 

Table 3. Interruption results 
Activity Not Interrupted  Interrupted Interruption 

Duration 

Is the Interrupted 

Activity Critical? AS AF  AS AF Day of Interruption Resumed on day 

0 0 0  0 0     

1 0 5  0 5     

2 5 12  5 12     

3 12 14  12 14     

4 14 28  14 28     

5 28 29  28 29     

6 29 34  29 34     

7 34 37  34 37     

8 37 45  37 45     

9 45 65  45 65     

10 65 68  65 68     

11 97 101  97 105 98 102 4 Days N 

12 68 75  68 75     

13 78 84  78 84     

14 101 126  105 130     

15 126 130  130 134     

16 75 78  75 78     

17 78 86  78 91 84 89 5 Days N 

18 86 98  84 98 89 91 2 Days Y 

19 89 94  84 89     

20 84 89  89 94     

21 130 138  134 142     

22 138 144  142 153 144 149 5 Days N 

23 155 159  98 102     

24 94 97  94 97     

25 144 149  153 158     

26 159 164  102 144 105 142 37 Days Y 

27 149 152  158 161     

28 152 155  161 164     

29 164 184  144 167 161 164 3 Days Y 

30 164 169  144 149     

31 184 195  167 178     
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