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Abstract: The engineering needs which have to consider the multi-physics are increasing. When the multi-phase 

problem is treated by monolithic coupling approach, there are some difficulties such as the increase in the number 

of degree of freedom, the complication of the program code and so on. In order to overcome these shortcomings 

in considering the new additional phase, we applied the partitioned iterative coupling approach to the Hydro-

Mechanical coupled problem in this research. In the partitioned iterative coupling approach, the behavior of single 

phases can be individually calculated and the interaction between the phases has been considered at an appropriate 

timing by the middleware. The middleware plays a role to regulate the single-phase analysis. In this research, we 

carried out the numerical simulation of one-dimensional consolidation by both the partitioned iterative coupling 

scheme and the monolithic coupling scheme, and then we confirmed that the numerical results are the same. 

Through the research, it figured out the efficient iterative scheme. 

Keywords: Hydro-Mechanical coupling; Partitioned method; Multi-physics.  

 

 

1. Introduction 
 

When we analyze the behavior of saturated soil, it is necessary to consider the interaction between the 

deformation of the soil particle and the change in pore water pressure. Therefore, we have to solve simultaneously 

the governing equation such as the equilibrium equation and continuity equation. 

 In recent years, the structures and the phenomena to be analyzed has been diversified, and in some cases, pore 

air, heat, and chemistry also have to be coupled. The field dealing with such problems is called Multi-physics. 

 When we solve a problem with a large number of coupled phases, the degree of freedom of the simultaneous 

equations to be solved increases as the number of coupled phases increases. In addition, the program becomes 

complicated, it becomes difficult to maintain and improve, which may cause a bug. The method solved 

simultaneously the governing equations describing the coupled problem is called the monolithic method. On the 

other hand, the method which the governing equations concerning each phase is solved separately, and the 

convergence calculation is conducted is called the partitioned method (Jahromi, 2007 [1]). If the deformation of 

soil, pore water pressure, pore air pressure, heat, chemical reaction etc. can be solved separately by the partitioned 

method, we can connect existing software and use it effectively. As a result, we can overcome the above-mentioned 

shortcomings of a large number of coupled phase problem.  

The objective of this research is to solve the soil-water coupled problem by the partitioned method. In the future, 

the partitioned method will be applied in the field of Multi-Physics other than soil-water. The applicability of the 

partitioned method to the one-dimensional consolidation problem is investigated in this research. Then, we 

compared the solution by the partitioned method and the monolithic method. 

 

2. Soil-water coupled problem and partitioned method 
 

The governing equations to describe the soil-water coupled problem are as follows. In the following description, 

compression is defined to be positive. 

 

∇ ⋅ 𝝈 − 𝜌𝒃 = 0, 𝝈 = 𝝈′ + 𝑝𝑤𝟏, 𝝈̇′ = 𝑪: 𝜺̇ , 𝜺 = − (𝒖 ⊗ ∇ + ∇ ⊗ 𝒖) 2⁄                                                                            (1) 

𝒘 = −𝒌 ⋅ ∇ℎ, 𝜀𝑣̇ − ∇ ⋅ 𝒘 = 0                                                                                                                                         (2) 

 

These equations are the equilibrium equation, the principle of effective stress, the constitutive equation, the 

strain-displacement relation, Darcy’s law and the continuity equation respectively. ρ is density, u is displacement 

vector, σ is stress tensor, b is body force vector, σ' is effective stress tensor, pw is pore water pressure, 1 is the 
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Kronecker delta, C is constitutive tensor, ε is strain tensor, w is Darcy’s velocity, k is hydraulic conductivity tensor, 

h is total water head, εv is volumetric strain. The boundary conditions are 

 

𝒖̂ = 𝒖 on Su,  𝒕̂ = −𝝈𝑇 ⋅ 𝒏 on Sσ                                                                                                                             (3)     

ℎ̂ = ℎ on Sh, 𝑞̂ = 𝒘 ⋅ 𝒏 on Sq                                                                                                                                 (4) 

 

where t is traction vector, n is a normal vector to the boundary surface, q is a quantity of flowing pore water, Su is 

displacement boundary, Sσ is stress boundary, Sh is head boundary, Sq is flow boundary.  

By multiplying the rate form of equilibrium equation by a test function 𝛿𝒖̇ and volume integrating it, the weak 

form of the equation is obtained: 

 

∫ 𝛿𝜺̇: 𝝈̇′𝑑𝑉
𝑉

+ ∫ 𝛿𝜀𝑣̇𝑝̇𝑤𝑑𝑉
𝑉

− ∫ 𝛿𝒖̇ ⋅ 𝒕̇̂𝑑𝑆
𝑆𝜎

− ∫ 𝜌𝛿𝒖̇ ⋅ 𝒃̇𝑑𝑉
𝑉

= 0                                                                           (5) 

 

The variables are spatially discretized as shown below. 

 

{𝑢} = [𝑁]{𝑢𝑛𝑒}, {𝜀} = [𝐵]{𝑢𝑛𝑒}, {𝜀𝑣} = [𝐵𝑣]{𝑢𝑛𝑒},                                                                                                 (6) 

ℎ = [𝑁ℎ]{ℎ𝑚𝑒}, {∇ℎ} = [𝐵ℎ]{ℎ𝑚𝑒},                                                                                                                               (7) 

 

where [N], [B], [Bv], [Nh] and [Bh] are the shape function matrices, the superscript ne and me indicate the variables 

at the discretized points. By substituting these equations to the weak form of equilibrium equation and continuity 

equation, the spatially discretized equations of an element are obtained: 

 

[𝐾𝑒]{𝑢̇𝑛𝑒} + [𝐾𝑣
𝑒]𝑇{𝛾𝑤ℎ̇𝑚𝑒} = {𝐹̇𝑒}                                                                                                                              (8) 

[𝐾𝑣
𝑒]{𝑢̇𝑛𝑒} − [𝐾ℎ

𝑒]𝑇{𝛾𝑤ℎ𝑚𝑒} = {𝑄̇𝑒}                                                                                                                              (9) 

 

where matrices are expressed as follows: 

 

[𝐾𝑒] = ∫ [𝐵]𝑇[𝐷][𝐵]𝑑𝑉
𝑉𝑒 , [𝐾𝑣

𝑒] = ∫ [𝑁ℎ]𝑇[𝐵𝑣]𝑑𝑉
𝑉𝑒 , [𝐾ℎ

𝑒] = ∫ [𝐵ℎ]𝑇 [𝑘]

𝛾𝑤
[𝐵ℎ]𝑑𝑉

𝑉𝑒 ,                                           (10) 

{𝐹̇𝑒} = ∫ [𝑁]𝑇{𝑡̇̂}𝑑𝑆
𝑆𝜎

𝑒 + ∫ 𝜌[𝑁]𝑇{𝑏̇}𝑑𝑉
𝑉𝑒 , {𝑄̇𝑒} = ∫ [𝑁ℎ]𝑇{𝑞̂}𝑑𝑆

𝑆𝑞
𝑒                                                                      (11) 

 

The time derivative of displacement, the total water head and the time derivative of the total water head are 

temporally discretized as 

 

𝑢̇ = 𝛥𝑢 𝛥𝑡⁄ , ℎ = (1 − 𝜃)ℎ𝑡 + 𝜃ℎ𝑡+𝛥𝑡, ℎ̇ = (ℎ𝑡+𝛥𝑡 − ℎ𝑡) 𝛥𝑡⁄                                                                              (12) 

 

where θ is constant within a range from 0 to 1. By substituting these equations to spatially discretized equations 

and summing up all elements, the spatially and temporally discretized weak forms of the equilibrium equation and 

the continuity equation (the global stiffness equation) are obtained: 

 

[
[𝐾] [𝐾𝑣]𝑇

[𝐾𝑣] −𝜃𝛥𝑡[𝐾ℎ]
] {

{𝛥𝑢𝑛}

{𝛾𝑤ℎ𝑡+𝛥𝑡
𝑚 }

} = {
𝛥𝑡{𝐹̇} + [𝐾𝑣]𝑇{𝛾𝑤ℎ𝑡

𝑚}

𝛥𝑡{𝑄} + (1 − 𝜃)𝛥𝑡[𝐾ℎ]{𝛾𝑤ℎ𝑡
𝑚}

}                                                                     (13) 

 

In order to separate the phase, the terms other than the diagonal terms are shifted to the right-hand side of the 

equation, we obtain 

 

[
[𝐾] 0

0 −𝜃𝛥𝑡[𝐾ℎ]
] {

{𝛥𝑢𝑛}

{𝛾𝑤ℎ𝑡+𝛥𝑡
𝑚 }

} = {
𝛥𝑡{𝐹̇} + [𝐾𝑣]𝑇{𝛾𝑤ℎ𝑡

𝑚} − [𝐾𝑣]𝑇{𝛾𝑤ℎ𝑡+𝛥𝑡
𝑚 }

𝛥𝑡{𝑄} + (1 − 𝜃)𝛥𝑡[𝐾ℎ]{𝛾𝑤ℎ𝑡
𝑚} − [𝐾𝑣]{𝛥𝑢𝑛}

}                                           (14) 

 

The upper equation describes the deformation problem and the shifted terms are given as the external force 

which is corresponding with the calculated excess pore water pressure from the lower equation. On the contrary, 

the lower equation describes the seepage flow problem and the shifted terms are given as the quantity of water 

flow which is corresponding to the calculated increment of displacement from the upper equation. These equations 

are solved separately until the solutions are converged. Fig.1 shows a flowchart of the above mentioned partitioned 

14

T. Takeyama et al. Journal of Civil Engineering and Construction 2019;8(1):13-18



 

method for soil-water coupled problem introduced the SOR method (Young, 1971 [2], Masatake, 2002 [3]). In 

Fig.1, the matrixes and vectors are replaced to simplify as 

 

[𝐾] → [𝐾𝑢𝑢], [𝐾𝑣]𝑇 → [𝐾𝑢ℎ], [𝐾𝑣] → [𝐾ℎ𝑢], −𝜃𝛥𝑡[𝐾ℎ] → [𝐾ℎℎ]                                                                            (15) 

𝛥𝑡{𝐹̇} + [𝐾𝑣]𝑇{𝛾𝑤ℎ𝑡
𝑚} → {𝐹}, 𝛥𝑡{𝑄} + (1 − 𝜃)𝛥𝑡[𝐾ℎ]{𝛾𝑤ℎ𝑡

𝑚} → {𝑄}                                                                          (16) 

 

 
Fig. 1: Flowchart of the partitioned method for soil-water coupled problem 

 

ωu and ωh are the acceleration parameter to be slow the convergence speed for the increment of displacement 

Δu and the hydraulic head h respectively, and they are applied in order to prevent from the divergence of calculation. 

 

3. Verification of partitioned method in one-dimensional consolidation 
 

In this section, the applicability of the partitioned method to soil-water coupled problem is verified by 

comparing the simulated results of one-dimensional consolidation obtained by the partitioned method and the 

monolithic method. In the simulation, one element is used. The upper side of the element is drained condition and 

the other sides are set as undrained conditions. The linear elastic constitutive model is applied in the simulation. 

The Lame’s constant λ and μ are set to be 1338.8kN/m2 and 666.9 kN/m2 respectively. The coefficient of 

permeability k is set to be 1.0☓10-4 m/s. The load of 98 kPa is applied to the upper side of the element at the first 

time step which the increment of time Δt = 1.0☓10-3 (day). After the second time step, the displacement at the 

upper side of the element and the excess pore water pressure at the lower side of the element are calculated by 

giving the increment of time Δt = 0.0367(day) which is corresponded to the time factor Tv = 0.001 and repeating 

the step 1000 times. 

The convergence calculation is carried out at the first step in the consolidation problem which the elapsed time 

is 0.001 (day) by using the partitioned method. In this research, when the error rate which is defined as |x(k+1)-x(k)|/| 

x(k)| ☓100 becomes less than or equals to 1.0☓10-5, the solutions are judged to be converged.  

By changing the acceleration parameter ωu from 1.0☓10-6 to 1.0☓10-3 by each 0.1 and the acceleration parameter 

ωh from 0.1 to 0.5 by each 0.05, the convergence calculation was performed and the iteration number was obtained. 

Fig. 2 shows a contour diagram of the iteration number. The interval between contour lines is every 20 iterations, 

after 200 iterations, every 100 iterations. When ωu = 1.0☓10-3, the calculation diverged between 0.4 and 0.5 of ωh. 

When ωu = 1.0☓10-3, the calculation was not converged within 500 iterations. It is understandable results that the 

calculation is diverged by using a large acceleration parameter and conversely, the number of iteration increases 

by using a small acceleration parameter. In this case, the optimum acceleration parameter ωuopt, ωhopt becomes 

1.0☓10-4, 0.45 respectively. 

Fig. 3 shows the contour diagram of the iteration number in case of Δt = 0.0356 (day) for the second step. By 

changing the acceleration parameter ωu from 1.0☓10-4 to 1.0☓10-1 by each 0.1 and the acceleration parameter ωh 

from 0.1 to 0.6 by each 0.05, the convergence calculation was performed. The trend in which the divergence occurs 

when a large acceleration parameter is used and the convergence becomes slower when the smaller acceleration 

parameter is used is similar to the first step. However, the appropriate acceleration parameter is different from the 

first step. In this case, the optimum acceleration parameter ωuopt, ωhopt becomes 1.0☓10-3, 0.55 respectively.  
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Fig. 2: The contour diagram of Δt = 0.001 (day) 

 

 
Fig. 3: The contour diagram of Δt = 0.0356 (day) 

 

This result suggests that the optimum value of the acceleration parameter has changed due to the change in the 

time increment between the first step and second step. Since [Khh] matrix contains the time increment, we 

investigated the influence of the order of [Khh] matrix in iteration number of the convergence calculation.  

Figs. 4 to 6 show the contour diagram of the iteration number when the order of norm of [Khh] matrix is set to 

be 10-9, 10-10, 10-11 respectively. The contour diagram is shown in Fig. 5 is same as the result of the convergence 

calculation at the first step. When the order of norm of [Khh] matrix becomes 10 times larger or 10 times smaller, 

the contour lines move along the axis of the acceleration parameter for the displacement ωu. The appropriate 

acceleration parameter ωu is 1.0☓10-5, 1.0☓10-4, 1.0☓10-3 in case of ||Khh|| = O(10-9), O(10-10), O(10-11) respectively. 

From these cases, the appropriate acceleration parameter is obviously related with the order of [Khh] matrix. These 

results suggest that the appropriate acceleration parameter might be possible to be estimated by [Khh] matrix. 

A comparison between the results of one-dimensional consolidation obtained by the partitioned method and the 

results obtained by the monolithic method is shown in Fig. 7. In order to calculate the displacement and excess 

pore water pressure by the monolithic method, the finite element program which can solve the soil-water coupled 

problem named DACSAR-I (Iizuka et al., 1987 [4], Takeyama et al. 2015 [5]) is employed. In the partitioned 

method, the appropriate acceleration parameters ωu and ωh set to be 1.0☓10-4, 0.45 for the first step and 1.0☓10-3, 

0.55 for the second step and after based on the contour diagram shown in Fig. 2 and Fig. 3. From Fig. 7, it is 

confirmed that the results by the partitioned method and the results by the monolithic method agree with each 

other. It is found that the disadvantage of the partitioned method that it takes a lot of time because there is 

processing of reading and writing the file in the iteration process. 

 

 
Fig. 4: The contour diagram of ‖[𝑲𝒉𝒉]‖ = 𝓸(𝟏𝟎−𝟗 ) 
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Fig. 5: The contour diagram of ‖[𝑲𝒉𝒉]‖ = 𝓸(𝟏𝟎−𝟏𝟎 ) 

 

 
Fig. 6: The contour diagram of ‖[𝑲𝒉𝒉]‖ = 𝓸(𝟏𝟎−𝟏𝟏 ) 

 

 
Fig. 7: Comparison between the partitioned method and the monolithic method 

 

4. Conclusions 
 

In order to solve the soil-water coupled problem separately, the partitioned method was applied. The coupled 

problem is divided into the deformation problem and the seepage flow problem and are solved separately until the 

solutions are converged. In order to verify the applicability of the partitioned method to soil-water coupled 

problem, the simulated results of one-dimensional consolidation obtained by the partitioned method and the results 

by the monolithic method are compared. The acceleration parameter is adopted in the iterative calculation. The 

appropriate acceleration parameter is obviously related with the order of the diagonal matrix in the global stiffness 

matrix. Therefore it is suggested that the appropriate acceleration parameters might be possible to be estimated by 

the diagonal matrix. It is confirmed that the results by the partitioned method and the results by the monolithic 

method agree with each other. However, it is found that the disadvantage of the partitioned method that it takes a 

lot of time because there is processing of reading and writing the file in the iterative calculation. 
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