Mechanical Behavior of Fiber-to-concrete Interface in Textile Reinforced Concrete: Theoretical Model

  • Shanshan Cheng
Keywords: Bond-slip; Interface; Analytical solution; Textile reinforced concrete.


This paper presents a theoretical solution of a reinforcement-to-concrete interface model under pull-push loading. Expressions for the interfacial shear stress distribution and load-displacement history are derived for different loading stages. The full debonding propagation process is discussed in detail and the analytical solutions are verified by comparing with existing theoretical models. Results of the analytical solution are presented to illustrate how the bond length and local bond-slip law affect the interfacial bond behavior. While the case study in this paper is on textile reinforced concrete, the analytical solution is equally valid to similar mechanical cases such as rebar reinforced concretes.