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Abstract: In the present study, the effects on chaotic behaviors of single-walled carbon nanotube (SWCNT) due 

to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing 

equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is 

adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for 

the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the 

SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top 

Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the 

periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear 

damping and tiny nonlinear damping. 

Keywords: chaotic motion; single-walled carbon nanotube; Lyapunov exponents; damping. 

 

 

1. Introduction 
 

Carbon nanotubes (CNTs) has drawn worldwide attention because of their potential applications in the fields 

of chemistry, physics, nano-engineering, electrical engineering, materials science, reinforced composite structures 

and construction engineering [1-3]. Recently many researches have been reported on the characteristics of 

vibration of nanotubes [4-8]. According to the previous theoretical and experimental studies, it is found that the 

mechanical behavior of nanostructures is indeed nonlinear in nature when they are subject to large external loads 

[9]. Among others, many researches on nonlinear vibration problems with nonlocal continuum theories have been 

reported [10-12]. Recently, the study of chaotic phenomena in nonlinear systems has drawn lots of attention and 

become a popular area of research [13-17]. However, the study about the chaotic motion of nonlinear system of 

single-walled carbon nanotubes is very limited, only few researches have been found in the literature [8, 18-19]. 

The chaotic motion is mainly attributed due to the nonlinear effects in the physical system. For a single-walled 

carbon nanotube (SWCNT) system, the nonlinear effects may be due to the elastic elements, nonlinear damping 

[20-23], system with fluids, nonlinear boundary conditions, etc. In the present study, we study the chaotic motion 

of nonlinear vibration of the single-walled carbon nanotube (SWCNT) subjected to linear and nonlinear damping 

by considering the effects of the geometric nonlinearity. The small scale effects on the nonlinear vibration of the 

SWCNT are considered by using the theory of nonlocal elasticity. Based on the Hamilton’s principle, the 

nonlinear governing equations of the single-walled carbon nanotube subjected to linear and nonlinear damping 

are formulated. The Galerkin’s method is utilized to discretize the integro-partial differential equation leading to 

a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation 

with the linear and nonlinear damping. In the past, many researches have been reported on the chaotic motion of 

forced Duffing equations [24-27]. The main purpose of the present study is to investigate the chaotic behavior of 

the nonlinear dimensionless governing equation under linear and nonlinear damping by computing the Lyapunov 

exponents. The determination for the Lyapunov exponents has been reported in several researches [28-31]. 

 

2. Governing equation of nonlinear vibration 
 

The single-walled carbon nanotube (SWCNT) embedded in a matrix with the linear and nonlinear damping is 

modeled as a single-tube pipe which has the radius R. The thickness of the tube is h, the length is L, the Young’s 

modulus of elasticity is E  and the mass density of SWCNT is ρ. The linear damping coefficient of the matrix is 

c1 and the nonlinear damping coefficient of the matrix is c3. In addition, the boundary conditions of the SWCNT 
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are considered as simply-supported at both ends. Based on the Hamilton’s principle and nonlocal elasticity theory, 

the nonlocal governing equations of the SWCNT in terms of the displacements can be obtained as follows:  
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where t denotes the time, ( , )q x t  is distributed transverse load, e0 is a constant appropriate to each material, a 

is an internal characteristic length (e.g., length of C–C bond, lattice parameter, and granular distance). Beside, 

c1and c3 are the linear and nonlinear damping coefficients respectively. In this study, we consider the nonlinear 

viscous damping since it is shown more effective in suppressing the resonant peak of a nonlinear system than 

linear damping, furthermore, the damping in SWCNT system is found to strongly depend on the amplitude of 

motion, and can be described by a nonlinear rather than a linear damping force [20-23]. Now we utilize one term 

approximation to obtain the displacement for the nonlinear system based on Galerkin’s approach, then the 

displacement function can be written as follows: 

( ) ( ), sin
x

w x t W t
L


=                                                                                          (2) 

where ( )W t  is the function of time t . 

Substituting Eq. (2) into Eq. (1), multiplying ( )sin x L  and integrating along the nanotube length, we can 

come up with the following nonlinear differential equation: 
32
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In addition, 
0
Q  denotes the time-independent loading and 

1
( )Q t  denotes the time-dependent loading 

individually. For convenience, the following parameters are introduced to deal with the tiny values in nano 

systems: 
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Substituting Eq. (5) into Eq. (3), the following dimensionless equations are obtained: 
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where the time-dependent loading is assumed as a periodic excitation, and is the driving frequency of the 

periodic loading. Eq. (6) is a forced Duffing equation with the linear and nonlinear damping. 

 

3. Chaotic motion of nonlinear system 
 

The main purpose of the present study is to investigate the chaotic motion of the nonlinear differential 

equation shown in Eq. (6) by evaluating Lyapunov exponents. The chaotic phenomena occurs when the top 

Lyapunov exponent changes from negative to positive. In order to compute Lyapunov exponents, it is necessary 

to study the growth of vectors tangent to the surface defined by the equations of motion in the phase space of the 
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physical system. In the present study, the approach to evaluate Lyapunov exponents is based on Wolf’s algorithm 

[28] and numerical methods in Refs. [29,30] so that the system as defined in Eq. (6) can be written into the 

following simultaneous equations, with 

1 2 3
, ,W W W W t W : 

1 2
W W                                                                                                                                  (8) 

3 3

2 1 1 1 2 3 2 0 1
cos( )W W W W W Q Q t                                                         (9) 

3
1.0W                                                                                                                             (10) 

where “ ” denotes 
d

dt
.  

Based on Wolf’s basic idea, is it necessary to evaluate the long-term evolution of an infinitesimal n-sphere, 

here n=3, of initial conditions. Lyapunov exponents are denoted as follows: 

2

( )1
lim log 1,2,3

(0)
i

i t
i

d t
i

t d
                                                                                      (11) 

where λi are ordered from largest to smallest and di(t) are the lengths of the ellipsoidal principal axes of the 

sphere. In order to be consistent with the definition of Lyapunov exponents, the separations of the initial 

conditions must be as small as the computer limitations tolerance. The nonlinear differential equations are 

integrated with these different initial conditions. However, in a chaotic system, the conditions of small 

separations can’t be guaranteed, which is required for the convergence of Lyapunov exponents spectrums. In 

order to cope with this problem, a “reference” trajectory is set up by the action of the nonlinear equations on 

some initial conditions. Then the trajectories of points on the surface of the sphere are computed by integrating 

the linearized equations of motion utilizing initial conditions infinitesimally separated from the reference 

trajectory. The principal axes are denoted by the evolution from the linearized equations of an initially 

orthonormal vector frame fixed to the reference trajectory. For a system shown in Eq. (6), dimension n=3 and 

nine linearized equations can be established. In Eq. (8-10), there are several parameters which can influence the 

chaotic motion of the system, such as γ, μ1, μ3, Q0, Q1, Ω and the initial conditions.  

 

4. Effects on chaotic motion due to linear and nonlinear damping 
 

First of all, we deal with the system without the effects of nonlinear damping parameter μ3 and fix all the 

parameters except Q1, we vary the amplitude of the periodic excitation from Q1=0 to a certain value when the top 

Lyapunov exponents change from negative to positive, that is when the chaotic motion occurs. After that we 

increase the value of Q1 gradually, then at certain value of Q1, the top Lyapunov exponents will change from 

positive to negative which implies that the motion of the system will change from chaotic motion to periodic 

motion until we hit the next critical value when the top Lyapunov exponents will change from negative to positive. 

The main purpose of the present study is to investigate the chaotic motion of the system shown in Eq. (6) with 

linear damping and nonlinear damping based on the computation of the top Lyapunov exponents, Therefore, after 

the first critical value of Q1 is found, we fix the value of Q1 slightly bigger than the critical one and all the 

parameters except the linear damping parameter μ1. Then we can study the effect of linear damping parameter on 

the chaotic motion of the system based on the computation of the top Lyapunov exponents. As we increase the 

value of linear damping parameter gradually, the top Lyapunov exponents will change from positive to negative 

at a certain value of μ1so that the system will change from chaotic to periodic motion. Finally we fix all the 

parameters except the nonlinear damping parameter to study the effect of nonlinear damping parameter on the 

chaotic motion of the system, it can be detected that with a small value of nonlinear damping parameter, the top 

Lyapunov exponents of the system would change from positive to negative so that the chaotic motion of the 

system would switch back to periodic motion. 

 

5. Numerical examples and discussions 
 

In the numerical computations, the simply supported boundary conditions are considered for the SWCNT. 

The dimensionless governing equation for SWCNT is written as in Eq (6), the main purpose of the present study 

is to investigate the chaotic motion for the nonlinear system in Eq. (6) with linear and nonlinear damping; 

therefore, the investigations are divided into two sections below. 

 

 5.1 Nonlinear system with linear damping only, μ3=0. 
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First of all, the numerical values of the parameters in Eq. (6) are fixed as follows: 

1 3 0
0.1, 1.0, 0.0, 3.0, 1.0.Q                                                      (12) 

In addition, the initial conditions in Eqs. (8-10) are as follows: 

W1(0)=1.0, W2(0)=0.0, W3(0)=0.0                                                                                      (13) 

Now we gradually vary the amplitude of the periodic excitation Q1 from Q1=0 to Q1=30.0. As we can see 

from Figs. 1a-1d, Lyapunov exponents of the system are computed for different values of Q1. In Figs. 1a-1b, the 

top Lyapunov exponent is computed as λ1= -0.00022 when Q1=14.31 as shown in Fig 1a; while λ1= +0.00178 

when Q1=14.32 as shown in Fig. 1b. Therefore, the system is originally stable under Q1=14.31 because the top 

Lyapunov exponent is negative, then appears to be losing its stability when Q1=14.32 because the top Lyapunov 

exponent changes from negative into positive, which implies the chaotic motion occurs when Q1 is slightly larger 

than 14.32. Furthermore, we gradually vary the amplitude of the periodic excitation from Q1=14.32 to Q1=30.0, 

as we can see from Figs. 1c-1d, the top Lyapunov exponent is computed as λ1= -0.00107 when Q1=23.72, then 

turns into λ1= +0.00046 when Q1=23.73. Therefore, we conclude that the first critical value to produce the 

chaotic motion for the system is Q1=14.32, while the second critical value is Q1=23.73. Now we fix the value of 

Q1 as Q1=16.0, which is slightly bigger than the first critical value 14.32, all the other parameters remain the 

same as those in Eqs. (12-13). In Figs. 2a-2c, we plot the time history, phase portrait and Poincare map of 

SWCNT. As we can detect from Fig. 2c, the chaotic motion of the system is quite obvious. It is well known that 

the displacement of the system gets smaller as the linear damping parameter increases. In Figs. 3a-3f, we evaluate 

the Lyapunov exponents by increasing the linear damping parameter from μ1=0.1 to μ1=0.8 individually. As we 

can detect from Figs. 3a-3b, the top Lyapunov exponents are still positive up to μ1=0.28, however, when μ1=0.29 

the top Lyapunov exponent becomes negative as shown in Fig. 3c, furthermore, if we increase the linear damping 

parameter from μ1=0.3 to μ1=0.8, the top Lyapunov exponents remain positive all the way which is fairly 

reasonable. In Figs. 4a-4c, we present the corresponding Poincare maps for different values of linear damping 

parameter μ1=0.3,0.5,0.8 individually, it is quite understood to notice that all the Poincare maps show periodic 

motion for the nonlinear system. On the other hand, if we decrease the linear damping parameter from μ1=0.1 

down to μ1=0.01,0.005, the top Lyapunov exponents are positive as shown in Figs.5a-5b, which implies that the 

chaotic motion occurs for the nonlinear system. Figs 6a-6b present the corresponding Poincare maps for different 

values of nonlinear damping parameter μ1=0.01,0.005 separately. Based on the above numerical computations, 

the chaotic motion will occur with small linear damping until the linear damping parameter exceeds the critical 

linear damping value, in the present case, μ1=0.29. 
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Fig. 1a. Lyapunov exponents versus time for Q1=14.31.  
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Fig. 1b. Lyapunov exponents versus time for Q1=14.32.  
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Fig. 1c. Lyapunov exponents versus time for Q1=23.72. 
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Fig. 1d. Lyapunov exponents versus time for Q1=23.73. 
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Fig. 2a. Time history of SWCNT. (μ1=0.1, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0) 
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Fig. 2b. Phase portrait of SWCNT. (μ1=0.1, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0) 
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Fig. 2c. Poincare map of SWCNT. (μ1=0.1, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0) 
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Fig. 3a. Lyapunov exponents versus time for μ1=0.1.  
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Fig. 3b. Lyapunov exponents versus time for μ1=0.28. 

 

0 10 20 30 40 50 60 70 80 90 100

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Dynamics of Lyapunov exponents

t

L
y
a
p
u
n
o
v
 e

x
p
o
n
e
n
ts

 

 


1
=-0.0025929


2
=-0.28741

 
Fig. 3c. Lyapunov exponents versus time for μ1=0.29. 
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Fig. 3d. Lyapunov exponents versus time for μ1=0.30. 
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Fig. 3e. Lyapunov exponents versus time for μ1=0.5. 
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Fig. 3f. Lyapunov exponents versus time for μ1=0.8. 
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Fig. 4a. Poincare map of SWCNT. (μ1=0.3, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0) 
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Fig. 4b. Poincare map of SWCNT. (μ1=0.5, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0)       
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Fig. 4c. Poincare map of SWCNT. (μ1=0.8, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0) 
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Fig. 5a. Lyapunov exponents versus time for μ1=0.01. 
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Fig. 5b. Lyapunov exponents versus time for μ1=0.005. 
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Fig. 6a. Poincare map of SWCNT. (μ1=0.01, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0)        
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Fig. 6b. Poincare map of SWCNT. (μ1=0.005, γ=1.0, μ3=0.0, Q0=3.0, Ω=1.0, Q1=16.0) 

 

5.2 Nonlinear system with linear damping and nonlinear damping 
Now we are ready to study the chaotic motion of the nonlinear system with both the linear and nonlinear 

damping. Here we adopt the same data as those in Eqs. (12-13) except the nonlinear damping parameter is added. 

Besides, we fix the amplitude of the periodic excitation as Q1=16.0 because it is slightly over the first critical 

value to create the chaotic motion for the nonlinear system. We gradually increase the value of nonlinear 

damping from μ3=0.001 to μ3=0.1 for the system, the Lyapunov exponents are shown in Figs. 7a-7e for different 

value of nonlinear damping. It can be seen from Fig. 7b that the top Lyapunov exponent is λ1= +0.0041421when 

μ3=0.0055; while the top Lyapunov exponent is λ1= -0.00047663 when μ3=0.0060 as shown in Fig. 7c. Then the 

top Lyapunov exponent remains negative from μ3=0.0060 to μ3=0.10 as shown in Figs. 7c-7e. Therefore, we can 

conclude that the chaotic motion of the system still happens with tiny nonlinear damping until μ3=0.0060, when 

the nonlinear damping parameter is larger than 0.006, the periodic motion of the system is expected to appear. 

The corresponding Poincare maps are presented in Figs. 8a-8c, as it can be detected from Fig 8a, the nonlinear 

system still presents chaotic phenomena 

with tiny nonlinear damping parameter, however, the nonlinear system regains its stability, namely, periodic 

motion, with nonlinear damping parameter bigger than 0.006 as seen from Figs. 8b-8c. Based on the above 

numerical computations, the chaotic motion will occur with tiny nonlinear damping until the nonlinear damping 

parameter exceeds the critical damping value, in the present case, μ3=0.0060. 
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Fig. 7a. Lyapunov exponents versus time for μ1=0.1, μ3=0.001. 
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Fig. 7b. Lyapunov exponents versus time for μ1=0.1, μ3=0.0055. 
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Fig. 7c. Lyapunov exponents versus time for μ1=0.1, μ3=0.006. 
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Fig. 7d. Lyapunov exponents versus time for μ1=0.1, μ3=0.001. 
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Fig. 7e. Lyapunov exponents versus time for μ1=0.1, μ3=0.1. 
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Fig. 8a. Poincare map of SWCNT. (μ1=0.1, γ=1.0, μ3=0.001, Q0=3.0, Ω=1.0, Q1=16.0) 
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Fig. 8b. Poincare map of SWCNT. (μ1=0.1, γ=1.0, μ3=0.01, Q0=3.0, Ω=1.0, Q1=16.0) 
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Fig. 8c. Poincare map of SWCNT. (μ1=0.1, γ=1.0, μ3=0.1, Q0=3.0, Ω=1.0, Q1=16.0)        

 

5. Conclusions 
 

In the present study, we investigate the effects on chaotic behaviors of single-walled carbon nanotube 

(SWCNT) due to the linear and nonlinear damping. By using the Hamilton’s principle, the nonlinear governing 

equation of the single-walled carbon nanotube embedded in a matrix is derived. We utilize the Galerkin’s method 

to discretize the integro-partial differential equation leading to a nonlinear dimensionless governing equation for 

the SWCNT, which turns out to be a forced Duffing equation with the linear and nonlinear damping. The chaotic 

phenomena occurs when the top Lyapunov exponent of the forced Duffing equation changes from negative to 

positive. Based on the computations of the top Lyapunov exponent, we can conclude that the chaotic motion of 

the nonlinear system occurs when the amplitude of the periodic excitation exceeds certain value by fixing all the 

other parameters. When the nonlinear system is without the nonlinear damping, the chaotic motion occurs with 

small linear damping until the linear damping parameter exceeds the critical linear damping value. Furthermore, 

if the system is with both the linear and nonlinear damping, the chaotic motion occurs with tiny nonlinear 

damping until the nonlinear damping parameter exceeds the critical damping value. 
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