Irradiation Hardening and Microstructure Characterization of Zr -1% Nb During Low Dose Neutron Irradiation

  • Carolina Vazquez
  • Eugenia Zelaya
  • Ana Maria Fortis
  • Patricia B. Bozzano
Keywords: Zirconium alloys; Radiation damage; Hydrogen; Electron microscopy; Tensile tests.

Abstract

Due to low neutron absorption cross section, high mechanical strength, high thermal conductivity and good corrosion resistance in water and steam, Zirconium alloys are widely used as fuel cladding material in nuclear reactors. During life-time of a reactor the microstructure of this alloy is affected due to, among other factors, radiation damage and hydrogen damage. In this work mechanical properties changes on neutron irradiated Zr-1wt.% Nb at low temperatures (< 100 °C) and low dose (3.5 ´ 1023 n m-2 (E > 1 MeV)) were correlated with hydrides and crystal defects evolution during irradiation. To achieve this propose, tensile tests of: 1) Non-hydrided and non-irradiated material, 2) Hydrided and non-irradiated material and 3) Hydrided and irradiated material were performed at 25 ºC and 300 ºC. Different phases, hydrides and second phase precipitates were characterized by transmission electron microscopy (TEM) techniques. For the hydrided and irradiated material, the ductility decreased sharply with respect to the hydrided and non-irradiated material, among other factors, due to the change in the microstructure produced mainly by neutron irradiation. Even if the presence of the hydride ζ (zeta) was observed, both in the irradiated and non-irradiated material, tensile tests showed that ζ-hydrides did not affect ductility, since hydrided samples are more ductile than non-hydrided samples.

Published
2021-11-15
Section
Articles