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Abstract: The flow stress behavior of hot-rolled Fe-3.3%Si steel was studied through single-pass warm tensile 
experiments within the temperature range of 250 to 700 °C and strain rate range of 0.001 s-1 to 0.1 s-1. The peak 
stress decreased linearly, but the elongation increased exponentially, with an increase in temperature. Work 
hardening behavior was obvious, and the non-uniform plastic deformation stage was shorter at lower 
temperatures, and accordingly the grains were elongated. A novel method was proposed to describe the tensile 
flow stress of Fe-3.3%Si steel at wide moderate temperatures, and the flow behavior of Fe-3.3%Si was described 
as the function of temperature, strain and strain rate. The capability of the model to predict tensile flow stress 
was investigated and the predicted results were in good agreement with measured values. Therefore, the model is 
reliable and helpful for the optimization of deformation parameters in warm processing. 
Keywords: tension; silicon steel; flow stress; moderate temperature. 
 
 

1. Introduction 
 

As an important soft magnetic alloy, non-oriented silicon steel is widely applied in the power, electronic, and 
military industries. Many researchers have studied the improvement of microstructural and magnetic properties 
of non-oriented steel by varying chemical composition, heating and cooling technologies, rolling parameters, and 
annealing processes [1-4]. Fe-3.3% Si steel is a high grade cold-rolled non-oriented electrical steel that exhibits 
obvious brittleness and poor cold-working ability [5]. Below the recrystallization temperature, recovery in metal 
forming occurs through an increase in the deformation temperature, which is helpful for the improvement of 
plastic deformation. For this reason, warm rolling is usually applied to silicon steel to improve its microstructural 
and magnetic properties [6-8]. The influence of the rolling parameters and deformation temperature on the 
texture and microstructure of non-oriented Fe-2.1%Si steel during warm rolling processing was previously 
investigated by Zhang [9]. They found that the deformation texture changed from a shear texture at the surface to 
a planar texture at the center. Furthermore, shear banding occurred in the grains and the grains were elongated 
along the rolling direction at rolling temperatures of approximately 200-500 °C. The deformation behavior at a 
moderate temperature is an important factor in the technological optimization of rolling processes, including 
cold and hot rolling. Additionally, in order to employ more advanced modeling techniques such as finite element 
analysis and calculation of deformation loads, the constitutive behavior during deformation regimes must be 
elucidated.  

The ductility of the magnetic material of Fe with 6.5 wt.% Si was previously investigated and its constitutive 
equation for warm deformation established by Li et al. [10]. Intergranular fractures could be transformed into 
quasicleavage fractures, which greatly improved the ductility of warm-rolled sheets at high rolling temperatures. 
The Johnson-Cook (JC) model was modified and employed by Zhang et al. [11] to predict the flow behavior of 
advanced high-strength steel at a wide range of temperatures from 298 to 1073K. The accuracy of the modified 
JC model was further verified, and the predicted flow stress was shown to be in good agreement with 
experimental results. Li et al. [12] investigated the warm deformation behavior of quenched 0.45C steel and 
established the corresponding constitutive equations.  

Currently, despite many studies reporting on the improvement of microstructural and magnetic properties [13-
15], few studies exist on the warm deformation behavior and constitutive equations of Fe-Si steel. In the present 
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work, the warm deformation behavior of a hot-rolled Fe-3.3%Si steel strip was therefore investigated using 
warm tensile experiments at a temperature range of approximately 250-700 °C and strain rate range of 
approximately 0.001-0.1 s-1. A new model was then proposed to express the change in flow stress during 
hardening and elongation. Simultaneously, new hardening index functions, which are sensitive to temperature 
and strain rate, were proposed in the developed constitutive model. This study is of great importance for the 
study and optimization of the parameters of silicon steel during warm deformation processes as well as rolling. 
 

2. Materials and Methods 
 

The raw material in this study was a hot-rolled Fe-3.3%Si steel strip from a plant in China with chemical 
composition as shown in Table 1. 

Table 1 Chemical composition of Fe-3.3%Si steel (wt.%). 
 
 

The thickness of the original sample was 2.5 mm, and standard tension specimens were cut with a total length 
of 200 mm, parallel section length of 50 mm, and gauge length of 30 mm, as shown in Fig. 1. A single-pass 
warm tensile test was carried out using an Inspekt Table 100 kN (Hegewald&Peschke,Germany) with samples at 
strain rates of 0.001, 0.01, and 0.1 s-1, and deformation temperatures of 250 °C, 400 °C, 550 °C, and 700 °C. 
Samples were first heated to their deformation temperature at 20 °C/min, and then the heat preservation time was 
10 minutes in order to obtain a uniform temperature. The temperature was kept stable during all tensile processes. 
The oxide layer on the fracture surface of specimens was subsequently removed using ultrasonic equipment, and 
their fracture morphologies examined using a SUPRA 55 SEM (Zeiss,Germany). Furthermore, the 
microstructure in the tensile direction and X-ray diffraction (XRD) patterns were examined by a DMI5000m 
(Leica,Germany) and Smartlab 9 (Rigaku, Japan). The used corrosion mixture was a mixture of 95 % alcohol 
and 5 % H2NO3. 

  
Figure 1. Part of the original tension samples. 

 

3. Results and Discussions 
 
3.1. Flow Stress 

The true stress-strain curves at different strain rates and temperatures are shown in Fig. 2. As can be seen, an 
increase in deformation temperature resulted in a significant decrease in peak stress and increase in elongation. 
Work hardening obviously occurred during metal forming at a deformation temperature of 250 °C, with a shorter 
non-uniform plastic deformation stage. When the deformation temperatures were 250 °C and 400 °C, samples 
rapidly underwent tensile breaking upon experiencing a stress greater than their peak stress, resulting in the 
obvious load drop. When the deformation temperature was 550 °C, on the other hand, flow stress increased to 
peak value first due to the main effect of work hardening, after which the deformation distortion provided the 
driving force for dynamic recrystallization softening during continuous deformation, resulting in a subsequent 
slow decrease in flow stress. Increasing the strain rate had a smaller effect on the increase in stress at 
deformation temperatures of 250 °C and 400 °C, because few slip systems exist at lower temperatures. 

Element C Fe Si Mn Cu S Cr Al 

Contents 0.0015 96.3 3.28 0.099 0.021 0.0097 0.012 0.042 
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Figure 2. True stress-strain curves of Fe-3.3%Si steel during moderate temperature tensile testing at different strain rates: (a) 

0.001 s-1; (b) 0.01 s-1; (c) 0.1 s-1. 
The measured peak stress and elongation values of Fe-3.3%Si steel strips are shown in Fig. 3. The peak stress 

decrease approximated a linear function, especially within the deformation temperature range from 400 °C to 
700 °C. However, elongation increased exponentially with the increase in temperature, indicating that the 
increase in temperature is beneficial for plastic deformation. The effects of the strain rate on peak stress and 
elongation became more significant at higher temperatures than at 250 °C. The reason for this might be that the 
slip system is not active at lower deformation temperatures. With an increase in strain rate, the dislocation 
movement was hindered from forming micro-cracks, so that peak stress increased, but elongation obviously 
decreased. Dynamic softening occurs more easily at higher deformation temperatures, which leads to a lower 
peak stress and higher elongation. Furthermore, lower strain rates allow sufficient time for dynamic softening 
processes to occur, especially at higher temperatures, and accordingly the tensile strength decreases and 
elongation increases significantly. 
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Figure 3. Peak stress and elongation of Fe-3.3%Si steel: (a) peak stress; (b) elongation. 

3.2 Modeling of flow stress 
A constitutive relation is generally used to describe the plastic flow properties of metals and alloys, which are 

only correlated with strain in case of cold deformation, but additionally with strain rate and deformation 
temperature in case of hot deformation. Since 700 °C is less than the conventional hot deformation temperature 
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for Fe-Si steel, hardening is the main influencing factor at moderate temperatures. On the basis of cold 
deformation behavior, strain was first considered for the constitutive equation and expressed as:  

nA                                                                                      (1) 
where A is a coefficient that can be obtained from the line slope of the σ-εn plot; n is the hardening index, of 
which the value is the slope of the ln(σ)-ln(ε) plot found through transformation of the natural logarithm of 
equation (1) into ln(σ)=ln(A)-n·ln(ε). 

The relationship between ln(σ) and ln(ε) at different temperatures and strain rates is shown in Fig. 4, with true 
stresses ranging from yield to peak values. From this figure, it is obvious that the hardening processes became 
shorter at higher temperatures and lower strain rates. The main reason for this is the easier and more complete 
dynamic recovery or recrystallization generated during tension. In addition, the hardening index of the material 
was approximately higher at higher temperatures and lower strain rates, with the influence of the temperature on 
the hardening index more obvious compared to that of the strain rate. As an example, the average hardening 
indices were about 0.26 and 0.28 at temperatures of 250 °C and 400 °C, respectively, but only 0.098 and 0.097 
at temperatures of 550 °C and 700 °C, respectively. When the deformation temperatures were 250 °C and 
400 °C, the corresponding hardening indices at a strain rate of 0.1 s-1 were significantly lower than those at 0.01 
s-1, possibly because the thermal effect is relatively more significant at higher deformation speeds and lower 
temperatures. 
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Figure 4. The relationship between ln(σ) and ln(ε) values at varying temperatures and strain rates: (a) 250 °C; (b) 400 °C; (c) 

550 °C; (d) 700 °C. 
As both the deformation temperature and strain rate were found to have an effect on the hardening index, the 

values at a strain rate of 0.01 s-1 were used as the reference conditions to model the following equation:  

0.01 0.01

B
n

n

   
 


                                                                           (2) 

where B equals the average slope of the  0.01ln ln( 0.01)n n   plot shown in Fig. 5, with a value of 0.109. The 

value of n0.01 is the hardening index at the given strain rate of 0.01 s-1 at different deformation temperatures. 
According to the fitting results, n0.01 can be expressed as:  

4
0.01 0.527 7.05 10n T                                                            (3) 
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Figure 5. The relationship between: (a) 0.01ln( )n n  and  ln 0.01  at different temperatures; (b) n0.01 and T. 

When the value of n is substituted into equation (1) for different temperatures and strain rates, the values for A 
are the slopes of the n    plots shown in Fig. 6. With an increase in temperature and decrease in strain rate, 
the value of A decreased significantly. However, the deformation temperature had a greater effect than the strain 
rate. Using the same method for obtaining n, A can be described by equation (4), with plots shown in Fig. 7. 
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According to equations (1) to (4), the constitutive equation for non-oriented Fe-3.3%Si steel can then be 
written as: 

0.109
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Figure 6. The relationship between   and n  at different temperatures and strain rates. 
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Figure 7. The relationship between: (a) 0ln( )A A  and  ln 0.01  at different temperatures; (b) A0.01 and T. 
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The performance of the derived constitutive models was further investigated by statistical analysis of the 
relative error through comparing the predicted results with experimental data. The relative errors were calculated 
as below [16]: 

100%i i
i

i

E P
RE

E


                                                                     (6) 

where Ei and Pi are the experimental and predicted flow stresses, respectively. 
The predicted relative errors under different conditions are shown in Fig. 8, clearly showing that the predicted 

flow stresses in the hardening process were in good agreement with the experimental data. The model had a 
higher predicted precision at a strain rate of 0.01 s-1 than at other strain rates. Almost all the predicted relative 
errors were less than 10 % under conditions of temperature and strain rate of 250 °C and 0.01 s-1, 400 °C and 0.1 
s-1, and 700 °C and 0.001 s-1. The model had a lower predicted precision at a temperature of 550 °C. As both the 
wide temperature and strain rate ranges need to be taken into account, it is difficult to formulate a model with a 
higher predicted precision. As an example, the relative error was less than 5 % for 98.1 % of results at the 
temperature of 250 °C and strain rate of 0.01 s-1, but at the temperature of 550 °C and strain rate of 0.001 s-1, the 
percentage of predicted results with a relative error of more than 20 % was about 88 %. In fact, from the above 
figures and equations, it was found that the proposed and employed model would have a higher predicted 
precision if the 550 °C and 700 °C deformation temperatures had not been considered, because the dynamic 
recrystallization generated above 550 °C resulted in higher errors of n and A. On the whole, the maximum value 
for the predicted relative error was about 24.87 %, and the proposed and employed constitutive equations were 
reliable.  
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Figure 8. Predicted relative error distribution at different conditions: (a) 0.001  ; (b) 0.01  ;  (c) 0.1  . 

 

4. Conclusions 
 

Hot-rolled non-oriented Fe-3.3%Si steel was studied using tensile testing in the temperature range of 200-
700 °C and strain rate range of 0.001-0.1 s-1. Peak stress decreased linearly, but elongation increased 
exponentially with an increase in deformation temperature. Work hardening behavior obviously occurred and the 
non-uniform plastic deformation stage was shortened at lower temperatures. The hardening processes of non-
oriented Fe-3.3%Si steel were described as a function of the deformation temperature and strain rate. The 
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predicted results by the proposed model were in good agreement with the measured values, and the models were 
shown to be reliable. The following equations describe the proposed models for hardening processes: 
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