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Abstract: The stress state of the elastic semi-strip is investigated in the paper. The lateral sides of the semi-strip 

are fixed and the semi-strip’s short edge is under the mechanical load. The longitudinal crack is located inside the 

semi-strip. The problem is reduced to the one-dimensional problem with the help of Fourier sin-, cos- 

transformation, which was applied directly to the Lame’s equilibrium equations and the boundary conditions. The 

one-dimensional problem is formulated is a vector form. Its solution is constructed with the help of the matrix 

differential calculation and the Green matrix-function, which was constructed in the bilinear form. The solution of 

the problem is reduced to the solving of three singular integral equations. The first equation in this system contains 

two fixed singularities in its kernel. To consider them the corresponding transcendental equation is constructed, 

and its roots are found. The special generalized method is applied to solve the system of singular integral equations. 

The stress intensity factors are calculated.  

Keywords: semi-strip; transverse crack; fixed singularity; singular integral equations.  

 

 

1. Introduction 
 

The plane elasticity problems are important as model examples for more complicated problems. The 

investigation of the stress state of the elastic semi-strip with a longitudinal crack can be used for the solving of the 

discontinuous problems in areas that contain angles and defects.  

There are three classed of methods that can be applied for the solving of the plane problems of elasticity for: 

analytical, numeric and analytically-numeric. The analytical approaches can be used for the solving of a 

sufficiently narrow class of problems when the numeric approaches can be used for much more elasticity problems, 

however their successful application for the solving of the problems in areas that contain zones of discontinuity, 

such as cracks and rigid inclusions, is usually very difficult. So, the development of analytically-numeric 

approaches is relevant and helpful. 

The plane problems of elasticity for a strip and a semi-strip were solved in the following works. The first basic 

odd-symmetric boundary value problem in the theory of elasticity in a half-strip with free longitudinal sides was 

solved in [1]. The solution was represented as series in Papkovich–Fadle eigenfunctions whose coefficients were 

found in an explicit form by using functions biorthogonal to the Papkovich–Fadle eigenfunctions. A method of 

analytical decomposition for analysis plane structures of a complex configuration was presented in [2]. For each 

part of the structure in the form of a rectangle all the components of the stress-strain state were constructed by the 

superposition method. The block element method was used to study a static boundary value problem for semi-

infinite lithospheric plates interacting with a deformable basement along Conrad boundary in [3]. It was assumed 

that the lithospheric plates have straight line boundaries parallel to each other and are considered in two positions. 

In the first case, the distance between the ends of the plates did not vanish, whereas in the second case the distance 

was absent, although the plates do not interact. 

The problems for a strips weakened by the cracks were studied in the following works. The solving of the 

problem for the infinite strip with a semi-infinite crack was reduced to the solving of the singular integral equation 

by the use of simple layer and double layer potentials in [4]. The method for the elastic strip which is weakened 

by cracks and holes was proposed in [5]. Non-standard boundary problem for Laplace equation in the infinite strip 

with a finite crack was reduced in [6] with the help of Fourier transformation to the integral equation and then to 

the vector Riemann-Hilbert problem. 

In the proposed work the plane mixed problem for a semi-strip with a longitudinal crack was solved by the 

analytically-numeric approach. The integral transformations are applied directly to the Lame’s equations and 

boundary conditions. The matrix differential apparatus and the matrix Green functions were used. The system of 

singular integral equations was solved with consideration of the fixed singularities in its kernel. 
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2. The statement of the problem 
 

 
Fig. 1 Geometry and coordinate system of the semi-strip 

 

The elastic (G is a share module, µ  is a Poison ratio) semi-strip (Fig. 1), 0<𝑥<𝑎, 0<𝑦<∞ is considered. The 

conditions of fixing are fulfilled on the lateral sides of the semi-strip 

𝑢(0, 𝑦) = 0,  𝑣(0, 𝑦) = 0,  𝑢(𝑎, 𝑦) = 0,  𝑣(𝑎, 𝑦) = 0,  0 < 𝑦 < ∞  (1) 

where 𝑢(𝑥, 𝑦) = 𝑢𝑥(𝑥, 𝑦), 𝑣(𝑥, 𝑦) = 𝑢𝑦(𝑥, 𝑦) are the displacement functions that satisfy the Lame’s equilibrium 

equations: 

{

𝜕2𝑢(𝑥,𝑦)

𝜕𝑥2
+

𝜅−1

𝜅+1

𝜕2𝑢(𝑥,𝑦)

𝜕𝑦2
+

2

𝜅+1

𝜕2𝑣(𝑥,𝑦)

𝜕𝑥𝜕𝑦
= 0

𝜕2𝑣(𝑥,𝑦)

𝜕𝑥2
+

𝜅+1

𝜅−1

𝜕2𝑣(𝑥,𝑦)

𝜕𝑦2
−

2

𝜅−1

𝜕2𝑢(𝑥,𝑦)

𝜕𝑥𝜕𝑦
= 0

    (2) 

here 𝜅 = 3 − 4𝜇 is the Muskchelishvili constant. 

The semi-strip is loaded at its short edge 

𝜎𝑦(𝑥, 0) = 𝑝(𝑥),  𝜏𝑥𝑦(𝑥, 0) = 0,0 < 𝑥 < 𝑎   (3) 

The longitudinal crack is located inside the semi-strip on the line 0 1,b y b x C    

𝑢(𝐶 − 0, 𝑦) − 𝑢(𝐶 + 0, 𝑦) = ⟨𝑢(𝐶, 𝑦)⟩ = 𝜑1(𝑦) ≠ 0, 𝑏0 < 𝑦 < 𝑏1 
𝑣(𝐶 − 0, 𝑦) − 𝑣(𝐶 + 0, 𝑦) = ⟨𝑣(𝐶, 𝑦)⟩ = 𝜑2(𝑦) ≠ 0, 𝑏0 < 𝑦 < 𝑏1  (4) 

𝜏𝑥𝑦(𝐶 − 0, 𝑦) − 𝜏𝑥𝑦(𝐶 + 0, 𝑦) = ⟨𝜏𝑥𝑦(𝐶, 𝑦)⟩ = 0, 𝑏0 < 𝑦 < 𝑏1 

𝜎𝑥(𝐶 − 0, 𝑦) − 𝜎𝑥(𝐶 + 0, 𝑦) = ⟨𝜎𝑥(𝐶, 𝑦)⟩ = 0, 𝑏0 < 𝑦 < 𝑏1 

𝜏𝑥𝑦|𝑥=𝐶±0 = 0, 𝜎𝑥|𝑥=𝐶±0 = 𝑝𝜎(𝑦),  𝑏0 < 𝑦 < 𝑏1                     (5) 

The problem (1)-(5) should be solved to estimate the stress state of the semi-strip. 

 

3. The general solving scheme 
 

The initial problem (1)-(5) is reduced to the one-dimensional problem with the help of Fourier sin-, cos- 

transformation applied by the variable y [7]. 

The following vectors and matrices are inputted 

𝑦⃗𝛽(𝑥) = (
𝑢𝛽(𝑥)

𝑣𝛽(𝑥)
), 

𝑓(𝑥) = (

3−𝜅

𝜅+1
𝜒′(𝑥)

−𝛽
𝜅+1

𝜅−1
𝜒(𝑥)

), 

𝛮𝛽
0 = (

𝜑1𝛽
𝜑2𝛽

) , 𝛮𝛽
1 = (

𝛽
𝜅−3

𝜅+1
𝜑2𝛽

𝛽𝜑1𝛽
), 

𝑃 = (

𝜅−1

𝜅+1
0

0
𝜅+1

𝜅−1

), 
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𝑄 = (
0

1

𝜅+1

−
1

𝜅−1
0
). 

Here 𝜒(𝑥) = 𝑣(𝑥, 𝑦)|𝑦=0 is the unknown function. 

The vector problem in the transformation domain is formulated as following 

{

𝐿2𝑦⃗𝛽(𝑥) = 𝑓(𝑥),

𝑦⃗𝛽(0) = 0, 𝑦⃗𝛽(𝑎) = 0,

⟨𝑦⃗𝛽(𝐶)⟩ = 𝛮𝛽
0, ⟨𝑦⃗′𝛽(𝐶)⟩ = 𝛮𝛽

1

                      (6) 

The solution of the problem (6) is constructed as the superposition of the general solution of the corresponding 

homogeneous equation, the partial solution of the inhomogeneous equation and the discontinuous solution of the 

problem [8]. 

 

3.1. The construction of the general solution 
The general solution of the homogeneous vector equation is found with the help of the corresponding matrix 

equation 𝐿2𝑌(𝑥) = 0,0 < 𝑥 < 𝑎 , which solution is found by the formula 𝑌(𝑥) =
1

2𝜋𝑖
∮ 𝑒𝜉𝑥𝑀−1(𝜉)𝑑𝜉
𝐶

,  where 

𝑀(𝜉) = 𝐼𝜉2 + 2𝛽𝑄𝜉 − 𝛽2𝑃. So the general solution of the homogeneous vector equation has the following form 

𝑦⃗𝛽
0(𝑥) = 𝑌1(𝑥) (

𝑐1
𝑐2
) + 𝑌2(𝑥) (

𝑐3
𝑐4
) , where 𝑌1(𝑥), 𝑌2(𝑥)  are the fundamental matrix solutions, 𝑐𝑖 ,  𝑖 = 1,4  are 

known constants. 

 

3.2. The construction of the partial and discontinuous solutions 
The following problem is considered 

{

𝐿2𝑦⃗𝛽(𝑥) = 𝑓(𝑥),

𝑉𝑖[𝑦⃗(𝑥)] = 0, 𝑖 = 0,1,

⟨𝑦⃗𝛽(𝐶)⟩ = 𝛮𝛽
0, ⟨𝑦⃗′𝛽(𝐶)⟩ = 𝛮𝛽

1

     (7) 

where  

𝑉0[𝑦⃗(𝑥)] = 𝛼𝑛 (
1 0
0 0

) 𝑦⃗(0) − (
0 0
0 1

) 𝑦⃗′(0), 𝑉1[𝑦⃗(𝑥)] = 𝛼𝑛 (
1 0
0 0

) 𝑦⃗(𝑎) − (
0 0
0 1

) 𝑦⃗′(𝑎). 

The matrix integral transformation with the kernel 

𝐻(𝑥, 𝛼𝑛) = (
𝑠𝑖𝑛 𝛼𝑛 𝑥 0

0 𝑐𝑜𝑠 𝛼𝑛 𝑥
) , 𝛼𝑛 =

𝑛𝜋

𝑎
, 𝑛 = 0,1,2. .. 

is applied to the problem (7) by the generalized scheme [9]. 

The problem (7) in the transformation domain can be written as 𝛺𝛽(𝛼𝑛)𝑦⃗𝑛 = 𝐹⃗𝑛.  

Here 

𝛺𝛽(𝛼𝑛) = −𝐼𝛼𝑛
2 − 2𝛽𝛼𝑛𝑄̃ − 𝛽

2𝑃, 

𝑄̃ = (
0

1

𝜅+1
1

𝜅−1
0
), 

𝑦⃗𝑛 = ∫ 𝑦⃗(𝑥)𝐻(𝑥, 𝛼𝑛)
𝑎

0
𝑑𝑥, 𝐹⃗𝑛 = 𝑓𝑛 + 𝛷⃗⃗⃗𝑛, 

𝛷𝑛 = (
𝛼𝑛 𝑐𝑜𝑠(𝛼𝑛𝑐)𝜑1𝛽 − 𝛽

𝜅−1

𝜅+1
𝑠𝑖𝑛(𝛼𝑛𝑐)𝜑2𝛽

−𝛽
𝜅−3

𝜅−1
𝑐𝑜𝑠(𝛼𝑛𝑐) 𝜑1𝛽 − 𝛼𝑛 𝑠𝑖𝑛(𝛼𝑛𝑐)𝜑2𝛽

). 

After the inverting of the integral transformation the partial 𝑦⃗𝛽
1(𝑥) = ∫ 𝐺(𝑥, 𝜉)

𝑎

0
𝑓(𝜉)𝑑𝜉 and the discontinuous 

𝑦⃗𝛽
𝑝(𝑥) =

2

𝑎
∑ ′𝐻(𝑥, 𝛼𝑛)𝛺𝛽

−1(𝛼𝑛)
∞
𝑛=0 𝛷⃗⃗⃗𝑛solutions are found. Here 𝐺(𝑥, 𝜉) = 2

𝑎
∑ ′𝐻(𝑥, 𝛼𝑛)𝛺𝛽

−1(𝛼𝑛)𝐻(𝜉, 𝛼𝑛)
∞
𝑛=0  is 

Green matrix-function which is constructed in the bilinear form. 

 

4. The solving of the singular integral equations 
 

The expressions for the displacement functions contain three unknown functions 𝜒(𝑥), 𝜑1(𝑦), 𝜑2(𝑦). For its 

finding the following system of singular integral equations (SSIE) is derived 
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{
 
 

 
 ∫ 𝜒̂(𝜉) [

1

𝜉−𝑥
+ 𝑍2(𝑥, 𝜉)] 𝑑𝜉

1

−1
+ 𝐾0(𝑥) = 𝑟̂(𝑥), 𝑥 ∈ 𝐼1

𝑑2

𝑑𝑦2
∫ 𝜑̃1(𝜂) 𝑙𝑛

1

|𝜂−𝑦|
𝑑𝜂 + 𝐾1(𝑦) = 0, 𝑦 ∈ 𝐼1

1

−1

𝑑2

𝑑𝑦2
∫ 𝜑̃2(𝜂) 𝑙𝑛

1

|𝜂−𝑦|
𝑑𝜂 + 𝐾2(𝑦) = 0, 𝑦 ∈ 𝐼1

1

−1

    (8) 

with the additional conditions ∫ 𝜒̂(𝜉)𝑑𝜉
1

−1
= 0.  

Here 

𝜒̂(𝜉) = 𝜒’ (
𝑎(𝜉+1)

2
), 

𝛧2(𝑥, 𝜉) = ℎ1 (
1

𝜉+𝑥−2
+

1

𝜉+𝑥+2
) + ℎ2 (

𝑥−1

(𝜉+𝑥−2)2
+

𝑥+1

(𝜉+𝑥+2)2
) + ℎ3 (

(𝜉−1)(𝑥−1)

(𝜉+𝑥−2)3
+

(𝜉+1)(𝑥+1)

(𝜉+𝑥+2)3
),  

ℎ1 = −
𝜅2−3

2𝜅
, ℎ2 = −

2

𝜅
, ℎ3 =

4

𝜅
, 

𝜑̃𝑖(𝜂) = 𝜑𝑖 (
(𝑏1−𝑏0)𝜂+(𝑏1+𝑏0)

2
) , 𝑖 = 1,2, 

𝐾0(𝑥) = ∫ 𝜒̂(𝜉)𝑓0(𝜉, 𝑥)𝑑𝜉
1

−1

+∫ 𝜑̃1(𝜂)𝑅̂0,1(+0, 𝜂)𝑑𝜂 +
1

−1

∫ 𝜑̃2(𝜂)𝑅̂0,2(+0, 𝜂)𝑑𝜂
1

−1

, 

𝐾𝑖(𝑦) = ∫ 𝜒̂(𝜉)𝑓𝑖(𝜉, 𝐶 + 0)𝑑𝜉
1

−1

+∫ 𝜑̃1(𝜂)𝑅̂𝑖,1(𝑦, 𝜂)𝑑𝜂 +
1

−1

∫ 𝜑̃2(𝜂)𝑅̂𝑖,2(𝑦, 𝜂)𝑑𝜂
1

−1

, 𝑖 = 1,2 

𝑓𝑖(𝜉, 𝑥), 𝑅̂𝑖,1(𝑦, 𝜂), 𝑅̂𝑖,2(𝑦, 𝜂), 𝑟̂(𝑥), 𝑖 = 0,1,2 

 are known regular functions. 
The first equation in (8) contains two fixed singularities. The corresponding transcendental equation is 

constructed. It is congruent to the transcendental equation presented in [10] for the problem of the wedge with the 

angle of openness 𝜋/2. The roots 𝜆𝑘 of the transcendental equation are found numerically. 

The generalized method [11] is used for the solving of SSIE (8). Accordingly to it the unknown functions are 

searched in the form 

𝜒̂(𝜉) = ∑ [𝑠𝑘𝜌𝑘
−(𝜉) + 𝑠𝑘+𝑁𝜌𝑘

+(𝜉)], 𝜉 ∈ [−1; 1]𝑁−1
𝑘=0    (9) 

where  

𝜌2𝑘
∓ (𝜉) = (1 ± 𝜉)𝑅𝑒 𝜆𝑘 ⋅ 𝑐𝑜𝑠(𝐼𝑚 𝜆𝑘 𝑙𝑛(1 ± 𝜉)) ,

𝜌2𝑘+1
∓ (𝜉) = (1 ± 𝜉)𝑅𝑒 𝜆𝑘 ⋅ 𝑠𝑖𝑛(𝐼𝑚 𝜆𝑘 𝑙𝑛(1 ± 𝜉)) ,

 𝑘 = 0, 𝑁 − 1. 

𝜑̃𝑖(𝜂) = ∑ 𝑠𝑛
𝑖√1 − 𝜂2𝑈𝑛(𝜂)

2𝑁−1
𝑛=0 , 𝜂 ∈ [−1; 1]𝑖 = 1,2    (10) 

here 𝑈𝑛(𝑦) are Chebyshev polynomials of the second kind. 

The segment [−1; 1] is divided on 2N segments by the points 𝑥𝑖: 𝑃2𝑁−1
𝜆0,−0.5(𝑥𝑖) = 0, 𝑖 = 0,2𝑁 − 1. SSIE (20) is 

considered when 𝑥 = 𝑥𝑖 , 𝑖 = 0,2𝑁 − 1. The system linear algebraic equations is obtained 

∑ 𝐷𝑚𝑛𝑆𝑛
∞
𝑛=0 = 𝑓𝑚, 𝑚 = 0,2𝑁 − 1    (11) 

where 𝑆𝑚 = (𝑠𝑚
0 ; 𝑠𝑚

1 ; 𝑠𝑚
2 )𝑇 , and components of 𝐷𝑚𝑛 = {𝑑𝑚𝑛

𝑖𝑗
}, 𝑖, 𝑗 = 0,1,2, 𝑓𝑚 = (𝑓𝑚

0; 𝑓𝑚
1; 𝑓𝑚

2)𝑇  are known 

constants. 

 

5. The stress intensity factors 
 

The stress intensity factors can be found as [12] 

𝐾𝐼− = ∑ 𝑠𝑘
1

2𝑁−1

𝑘=0

√𝜋(𝑏1 − 𝑏0)(𝑛 + 1)(−1)
𝑘

√2
, 𝐾𝐼+ = ∑ 𝑠𝑘

1

2𝑁−1

𝑘=0

√𝜋(𝑏1 − 𝑏0)(𝑛 + 1)

√2
 

𝐾𝐼𝐼− = ∑ 𝑠𝑘
2

2𝑁−1

𝑘=0

√𝜋(𝑏1 − 𝑏0)(𝑛 + 1)(−1)
𝑘

√2
, 𝐾𝐼𝐼+ = ∑ 𝑠𝑘

2

2𝑁−1

𝑘=0

√𝜋(𝑏1 − 𝑏0)(𝑛 + 1)

√2
 

 

6. Conclusions 
 

The new approach was used for the solving of the plane mixed elasticity problem for a semi-strip. The partial 

and discontinuous solutions were constructed with the help of the integral transformation applied by the 

generalized scheme. The solving of the problem was reduced to the solving of SSIE, where the first equation 

contains two fixed singularities. The corresponding transcendent equation was constructed and its roots were 

found. SSIE was solved with the help of the generalized method. 
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