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Abstract: This paper presents a model-based optimization solution suitable for short-term production optimization 

of large gas fields with wells producing into a common surface network into a shared gas treatment plant. The 

proposed methodology is applied to a field consisting of one dry gas reservoir with a CO2 content of 7.3% and 

one wet gas reservoir with a CO2 content of 2.8% and initial CGR of 15 stb/MMscf. 23 wells are producing, and 

all gas production is processed in a common gas treatment plant where condensates and CO2 are extracted from 

the reservoir gas. The final sales gas must honor compositional constraints (CO2 content and heating value). The 

proposed solution consists of a bi-level optimization algorithm. A Mixed Integer Linear Programming (MILP) 

formulation of the optimization problem is solved, assuming some key parameters in the gas plant to be constant. 

Hydraulic performances of the system, approximated using SOS2 piecewise linear models, and condensates and 

CO2 extraction, captured using simplified models, are included in the MILP. After solving the MILP, the values 

of the key parameters are calculated using a full simulation model of the gas plant and the new values are 

substituted in the MILP input data. This iterative procedure continues until convergence is achieved. Results show 

that the proposed methodology can find the optimum choke openings for all wells to maximize the total gas rate 

while honoring numerous surface constraints. The solution runs in 30 sec. and an average of 3-4 iterations is 

needed to achieve convergence. It is therefore a suitable solution for short-term production optimization and daily 

operations. 

Keywords: Natural gas; Production optimization; Mixed integer linear programming; Decision support.  

1. Introduction

Oil & gas reserves are typically discovered by carrying out seismic surveys and drilling exploration wells. Some 

key parameters like oil in place, rock porosity and permeability, faults communication, reservoir fluid viscosity 

and phase behavior are estimated from these exploration campaigns. If the operator decides to develop the asset, 

a lot of choices regarding technology and development strategies must be made. Due to large financial investments, 

these decisions have a significant impact for the company. In addition, developing a field requires planning 

production on multiple horizons [1]. The long-term production plan (typically, 3 to 20 years) includes strategic 

decisions for the choice of technology, export options and recovery strategies. The main objective is to maximize 

the Net Present Value (NPV) of the whole project and recover the investments [2]. It also includes risk and 

uncertainty management. The mid-term horizon (from months to years) production plan aims at deciding the 

production and injection rates and the drilling program (well placement and completion). A reservoir simulator is 

usually a good tool for planning mid-term production. It must be updated with production data (history matching) 

and new surveys. On a short-term horizon (typically, days to weeks), both subsurface and surface are important. 

The existing installations (wells, pipelines, surface processing plants) are to be optimally used to maximize the 

profits. Decision variables include individual well production, valve openings, plant conditions and operational 

constraints usually include physical constraints (e.g. maximum production rate to avoid sand production) and 

equipment constraints (e.g. maximum capacity of gas compressor).  

Oil & gas production systems are dynamically changing over time. These changes are consequences of reservoir 

depletion, recovery strategies and availability of critical equipment. Therefore, the optimal operating point is also 

dynamically changing over time and production engineers must take daily decisions to maintain production as 

high as possible. Without a decision support tool, a typical decision is taken based on (1) the field data (e.g. flow 

metering), (2) a limited number of parametric studies launched on simulators and (3) the production engineer 

experience [3]. A decision support tool leads to a more informed and robust decision-making process and 

ultimately to higher revenues for the operators, since it can evaluate numerous alternatives that could not be 

simulated manually. The production engineer’s experience still has a relative importance in the decision-making 
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process: data validation, uncertainty management, exploring the operating envelope, instability control. Figure 1 

shows how a short-term production optimization solution can be integrated in daily production operations: (1) data 

is acquired from the field, (2) production engineers validate the acquired data (3) models are updated to match 

field measurements, (4) the optimization algorithm is run iteratively by the operator (the operator can check the 

optimal solution against more detailed models and re-launch different optimization cases with more refined 

constraints) and (5) a decision is made and actions are finally taken on the production system [3]. 

 
Figure 1. Production optimization loop (adapted from Hoffmann et al. [3]). 

 

The challenge with such optimization tools come from the complexity of the production systems (relatively 

high number of decision variables and constraints) and the complexity and nonlinearity of the models used to 

predict the system performance (e.g. well production, pressure drop in flowlines, plant efficiency). An additional 

challenge occurs when wells can be routed into multiple manifolds or when disjunctive constraints are part of the 

optimization problems. A well-established technique to address this challenge is to use SOS2 piecewise linear 

models to approximate the nonlinear functions modeling well derivability and pressure drop in pipelines. The 

initial Mixed Integer Nonlinear Problem (MINLP) is then transformed into a Mixed Integer Linear Problem 

(MILP) that can be solved with well-known algorithms such as the simplex and the branch & cut. The advantage 

of this technique is (1) the relatively low runtime (compared to nonlinear solvers), (2) the guarantee to find the 

global optimum of the MILP and (3) the robust handling of integer (or binary) variables.  

The work of Kosmidis et al. [4] is, to the author’s knowledge, the first one to employ piecewise linear 

approximations for nonlinear functions in the petroleum engineering production problem. The same approach was 

used in the work of Bieker [5]. Gunnerud and Foss [6] include well routing in their MILP formulation and apply 

it to the Troll field, in Norway. In addition, they present two decomposition methods to improve the computational 

efficiency. Codas et al. [7] develop a MILP framework for integrated production optimization of complex oil fields 

in Brazil with routing of wells, limited processing capacity, pressure constraints, wells with gas-coning behavior 

and wells sharing flowlines. The work of Codas and Camponogara [8], Silva and Camponogara [9], Hulse and 

Camponogara [10] and Silva et al. [11] are other examples of successful applications of piecewise linear 

approximations to oil & gas production optimization. More recently, Hoffmann and Stanko [12] apply this 

technique to optimize a large production network with ESP-boosted wells.  

Typically, processing facilities are modelled as a constant pressure node with constraints on oil, gas and water 

processing capacity (Bieker et al. [13]). The model should be updated whenever the capacity changes. Optimizing 

across the processing facility is rarely addressed. Midthun [14] develops a MILP model for a gas processing plant 

including gas compressors and splitters. However, the physical phase behavior (condensation of heavy 

hydrocarbon components) and extraction of key components (CO2 and/or H2S) are not addressed. 

In this paper, I present a modeling and optimization solution for a major gas field located in North Africa. The 

proposed solution consists of iteratively solving a Mixed Integer Linear Programming (MILP) formulation of the 

optimization problem. Hydraulic performances of the system, approximated using SOS2 piecewise linear models, 

and condensates and CO2 extraction, captured using simplified models, are included in the MILP. To reduce the 

runtime, some key parameters in the gas plant model are assumed constant in the MILP. After each iteration, new 

values for these key parameters are calculated using the optimal solution and a full process simulation model and 

fed back to the solver. This iterative procedure continues until convergence. 

The field consists of 2 gas reservoirs. The largest reservoir is a dry gas reservoir with a Condensate-Gas Ratio 

(CGR) of 3 stb/MMscf and CO2 content of 7.3%. The other reservoir is producing wet gas with an initial CGR of 

15 stb/MMscf and CO2 content of 2.8%. Both reservoirs are producing into a common surface processing facility 

which aims at treating the reservoir gas and producing two final sales products: condensates (light liquids extracted 
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from the reservoir gas) and sales gas (dehydrated and sweetened reservoir gas). The dry gas reservoir is located 

only a few kilometers away from the gas plant, while the other reservoir is located between 35 and 45 km away 

from the plant, see Fig. 2. 

 

Figure 2. Field layout. 

 

19 wells are producing in the dry gas reservoir. The wells are arranged in 4 clusters. Each cluster is producing 

into a single 12-inch trunkline to the gas treatment plant (GTP). 4 wells are producing in the wet gas reservoir. 

These wells are arranged in one cluster which is producing into a single 20-inch trunkline, see Fig. 3. 

 
Figure 3. Surface production network: wells, jumpers, clusters and trunklines. 
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The Gas Treatment Plant (GTP) consists of several separator vessels (to extract condensates from the reservoir 

gas), a CO2 extraction plant (amine plant) and a dew point control system to ensure that the sales gas is within 

specifications, see Fig. 4. Dry gas wells are flowing towards the medium pressure (MP) separator and wet gas 

wells into the high pressure (HP) separator. Some condensates are extracted from those separators. The separator 

gas is then processed in the amine plant to remove CO2. After the amine plant, the gas is finally processed in the 

dew point control system. The gas is cooled down and the very last heavy components are extracted in the two 

separators. The final gas must honor the sales gas specifications in terms of CO2 content (maximum 2%), heating 

value and dew point pressure. The condensates extracted at the different points in the system are all passing in a 

stabilization tower ensuring that the sales liquid is stable and can be safely transported by trucks. 

 

 

Figure 4. Simplified flow diagram of the gas treatment plant. 

 

2. Production system modeling 
 

2.1. Production well model 
For all production wells, the gas production rate is given by: 

𝑞𝑔 =  ℱ(𝑝𝑤ℎ) (1) 

where 𝑞𝑔  is the well gas rate and 𝑝𝑤ℎ  is the wellhead pressure. ℱ is a nonlinear function depending on the well 

architecture (depth, trajectory, diameter), the fluid being produced (CGR and WC) and the reservoir conditions 

(reservoir pressure and inflow performance). If the fluid or the reservoir conditions change due to reservoir 

depletion, function ℱ must be updated (e.g. after a well flow test is performed). Figure 5 (a) gives an example of 

a well performance curve for well DG-9 producing in the dry gas reservoir. 

Each well is equipped with a choke valve to regulate the well production. Since choke valve models require a 

lot of data for calibration, the choke valve is modeled as a simple pressure drop in this paper: 

𝑝𝑤ℎ ≥ 𝑝𝑑𝑠 (2) 

where 𝑝𝑑𝑠 is the pressure after the choke valve. 

 

2.2. Flowline model 
There are two types of flowlines in the production model: (1) jumpers making the junction between wellheads 

and clusters and (2) trunkline making the junction between clusters and production separators in the GTP. 

For each well, jumpers are modeled as follows: 

∆𝑝𝑗𝑢𝑚𝑝𝑒𝑟 = 𝒢( 𝑞𝑔 , 𝑝𝑐) (3) 

where ∆𝑝𝑗𝑢𝑚𝑝𝑒𝑟  is the pressure drop in the jumper, 𝑞𝑔  is the gas rate passing through the jumper, 𝑝𝑐  is the outlet 

pressure of the jumper and 𝒢 is a nonlinear function depending on the jumper characterisitcs (length, diameter, 

difference of altitute, fluid type passing through it). Figure 5 shows an example of pressure drop for a jumper. Note 

that for a given well, we have: 
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𝑝𝑐 = 𝑝𝑑𝑠 −  ∆𝑝𝑗𝑢𝑚𝑝𝑒𝑟  (4) 

Since trunklines are producing into a production separator where pressure is held constant, the dependency on 

the outlet pressure is no longer needed and trunklines are modeled as follows: 

∆𝑝𝑡𝑟𝑢𝑛𝑘𝑙𝑖𝑛𝑒 =  ℋ( 𝑞𝑔 ) (5) 

where ℋ is a nonlinear function depending on the architecture of the the trunkline, the fluid passing through it and 

the conditions at the outlet (pressure and temperature in the production separator). Figure 5 (b) shows the flow 

performance curves for trunklines of the dry gas reservoir. The pressure 𝑝𝑐 at a given cluster c is given by: 

𝑝𝑐 = 𝑝𝑠𝑒𝑝 +  ∆𝑝𝑡𝑟𝑢𝑛𝑘𝑙𝑖𝑛𝑒  (6) 

where 𝑝𝑠𝑒𝑝 is the separator pressure at the outlet of the trunkline.  

 

 
 

(a) Well Performance curve for well DG-9 (b) Flow Performance curves for DG trunklines 

Figure 5. Example of hydraulic performance curves used in this paper. 

 

2.3. Gas treatment plant model 
The MP and HP production separators are modeled using two sets of numerical factors to determine the 

separator gas and liquid rates. These numerical factors depend on (1) the fluid composition (wet gas or dry gas) 

and (2) the pressure and temperature conditions in the separator vessels. 

For the MP separator, 

𝑚̇𝑜,𝑠𝑒𝑝
𝑀𝑃 =  𝑟𝑜

𝑑𝑔
 ∙ 𝑞𝑔

𝑀𝑃 (7) 

𝑞𝑔,𝑠𝑒𝑝
𝑀𝑃 =  𝑟𝑔

𝑑𝑔
 ∙ 𝑞𝑔

𝑀𝑃 (8) 

where 𝑚̇𝑜,𝑠𝑒𝑝
𝑀𝑃  and 𝑞𝑔,𝑠𝑒𝑝

𝑀𝑃  are respectively the MP separator liquid mass rate and MP separator gas rate, 𝑞𝑔
𝑀𝑃 is the 

gas rate entering the separtor, 𝑟𝑜
𝑑𝑔

 and 𝑟𝑔
𝑑𝑔

 are numerical factors computed for the dry gas and the current separator 

conditions.  

Similarly, for the HP separator,  

𝑚̇𝑜,𝑠𝑒𝑝
𝐻𝑃 =  𝑟𝑜

𝑤𝑔
 ∙ 𝑞𝑔

𝐻𝑃 (9) 

𝑞𝑔,𝑠𝑒𝑝
𝐻𝑃 =  𝑟𝑔

𝑤𝑔
 ∙ 𝑞𝑔

𝐻𝑃 (10) 

Note that  the numerical factors 𝑟𝑜
𝑤𝑔

, 𝑟𝑔
𝑤𝑔

, 𝑟𝑜
𝑑𝑔

, and 𝑟𝑔
𝑑𝑔

 have to be updated when the pressure and/or temperature 

conditions change in the MP or HP separator. In this paper, we assume that the fluid compositions coming from 

both reservoirs remains constant (no retrograde condensation at reservoir conditions). Table 1 gives the numerical 

values of thoses factors for the configuration of Fig. 4. These values are based on the equation of state and fluid 

compositions given in Appendix B. 

The amine plant is slightly more complex to model as the CO2 content must be tracked. The gas entering the 

amine plant is given by: 

𝑞𝑔
𝑖𝑛 =  𝑞𝑔,𝑠𝑒𝑝

𝐻𝑃 +  𝑞𝑔,𝑠𝑒𝑝
𝑀𝑃 + 𝑞𝑔

𝑠𝑡𝑎𝑏  (11) 

where 𝑞𝑔
𝑠𝑡𝑎𝑏 is the gas rate coming from the stabilization tower, see Fig. 4. 
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Table 1. Numerical values of the gas and oil formation factors in the production separators. 

Numerical Factor Value Unit 

𝑟𝑜
𝑤𝑔

 0.109599 kg/sm3 

𝑟𝑜
𝑑𝑔

 0.000880 kg/sm3 

𝑟𝑔
𝑤𝑔

 0.954930 sm3/sm3 

𝑟𝑔
𝑑𝑔

 0.999861 sm3/sm3 

 

The quantity (in moles) of CO2 entering the amine plant is given by: 

𝑛𝑐𝑜2
𝑖𝑛 =  𝑛𝑐𝑜2

𝐻𝑃 + 𝑛𝑐𝑜2
𝑀𝑃 + 𝑛𝑐𝑜2

𝑠𝑡𝑎𝑏  (12) 

𝑛𝑐𝑜2
𝐻𝑃 =  𝑞𝑔,𝑠𝑒𝑝

𝐻𝑃  ∙ 𝑧𝑐𝑜2

𝑑𝑔
∙  

1

𝑉𝑚
  (13) 

𝑛𝑐𝑜2
𝑀𝑃 =  𝑞𝑔,𝑠𝑒𝑝

𝑀𝑃  ∙ 𝑧𝑐𝑜2

𝑤𝑔
∙  

1

𝑉𝑚
 (14) 

𝑛𝑐𝑜2
𝑠𝑡𝑎𝑏 =  𝑞𝑔

𝑠𝑡𝑎𝑏  ∙ 𝑧𝑐𝑜2
𝑠𝑡𝑎𝑏 ∙  

1

𝑉𝑚
 (15) 

where 𝑧𝑐𝑜2

𝑑𝑔
 , 𝑧𝑐𝑜2

𝑤𝑔
 and 𝑧𝑐𝑜2

𝑠𝑡𝑎𝑏 are respectively the molar fractions of CO2 in the dry gas, wet gas and gas coming 

from the stabilization tower and 𝑉𝑚 is the molar volume of gas at standard conditions (𝑉𝑚 = 23.69 sm3/kg-mole). 

Note that Eq. (13) and (14) assume that all the CO2 stays in the production separator gas phase. This assumption 

is relatively good given the properties of CO2 at low pressures. 

Since the amine plant has a maximum capacity, the operator may have to send some of the gas to a by-pass line, 

see Fig. 6: 

𝑞𝑔
𝑖𝑛 =  𝑞𝑔

𝑎 + 𝑞𝑔
𝑏𝑝

 (16) 

where 𝑞𝑔
𝑎 is the gas rate entering the amine unit and 𝑞𝑔

𝑏𝑝
 is the gas rate by-passing the amine unit. The quantity of 

CO2 is split accordingly: 

𝑛𝑐𝑜2
𝑖𝑛 =  𝑛𝑐𝑜2

𝑎  + 𝑛𝑐𝑜2

𝑏𝑝
 (17) 

To ensure consistency: 

𝑞𝑔
𝑏𝑝

=  
𝑛𝑐𝑜2

𝑏𝑝

𝑧𝑐𝑜2

𝑏𝑝 ∙ 𝑉𝑚  (18) 

where 𝑧𝑐𝑜2

𝑏𝑝
 is the molar fraction of CO2 in the mixture entering the gas plant: 

𝑧𝑐𝑜2

𝑏𝑝
=  

𝑧𝑐𝑜2

𝑑𝑔
 ∙ 𝑞𝑔

𝐻𝑃 +  𝑧𝑐𝑜2

𝑤𝑔
 ∙ 𝑞𝑔

𝑀𝑃 + 𝑧𝑐𝑜2
𝑠𝑡𝑎𝑏  ∙ 𝑞𝑔

𝑠𝑡𝑎𝑏 

𝑞𝑔
𝐻𝑃 +  𝑞𝑔

𝑀𝑃 + 𝑞𝑔
𝑠𝑡𝑎𝑏

 (19) 

The CO2 removal is modeled as follows: 

𝑛𝑐𝑜2
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 =  𝑛𝑐𝑜2

𝑎 ∙ 𝑅𝑐𝑜2
  (20) 

where 𝑅𝑐𝑜2
=  0.975 is a numerial factor representing the amine unit efficiency. The CO2 gas rate being removed 

is then: 

𝑞𝑐𝑜2
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 =  𝑛𝑐𝑜2

𝑎 ∙ 𝑉𝑚  (21) 

The gas rate and quantity of CO2 entering the dew point system are given by: 

𝑞𝑔
𝑑𝑝𝑠

= 𝑞𝑔
𝑖𝑛 − 𝑞𝑐𝑜2

𝑟𝑒𝑚𝑜𝑣𝑒𝑑  (22) 

𝑛𝑐𝑜2

𝑑𝑝𝑠
=  𝑛𝑐𝑜2

𝑖𝑛 −  𝑛𝑐𝑜2
𝑟𝑒𝑚𝑜𝑣𝑒𝑑  (23) 

The dew point system is modeled as follows: 

𝑚̇𝑜
𝑑𝑝𝑠

=  𝑟𝑜
𝑑𝑝𝑠

 ∙ 𝑞𝑔
𝑑𝑝𝑠

 (24) 

𝑞𝑔
𝑠𝑎𝑙𝑒𝑠 =  𝑟𝑔

𝑑𝑝𝑠
 ∙ 𝑞𝑔

𝑑𝑝𝑠
 (25) 

where 𝑞𝑔
𝑑𝑝𝑠

 is gas rate entering the dew point system, 𝑚̇𝑜
𝑑𝑝𝑠

 is the liquid mass rate extracted in the dew point 

system, and 𝑞𝑔
𝑠𝑎𝑙𝑒𝑠 is the sales gas rate at the outlet of the dew point system. 𝑟𝑜

𝑑𝑝𝑠
 and 𝑟𝑔

𝑑𝑝𝑠
 are numerical factors 
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representing the condensation occuring in the dew point system. These two factors depend on the composition 

mixture entering the dew point system and the pressure and temperature conditions in the dew point system. 

 
Figure 6. Sketch of the amine plant with the amine unit and the by-pass line. 

 

The quantity of CO2 in the sales gas is simply given by: 

𝑛𝑐𝑜2
𝑠𝑎𝑙𝑒𝑠 =  𝑛𝑐𝑜2

𝑑𝑝𝑠
 (26) 

Eq. (26) assumes that a neglecable amount of CO2 (usually less than 1%) is condensed in the dew point sytem. 

 

3. Proposed optimization solution 
 

3.1. Mixed integer linear programming formulation 
In this paper, all nonlinear functions (ℱ, 𝒢, ℋ) are piecewise linearized and included in a MILP using SOS2 

models, see Beale and Forrest [15] and Silva and Camponogara [9] for more details. All notations used in the 

MILP formulation are given in Appendix A.  

The objective function is to maximize the sales gas rate: 

max
𝛾

 𝑞𝑔
𝑠𝑎𝑙𝑒𝑠  (27) 

where 𝛾 represents all variables of the problem (see Tab. A.1, A.2 and A.3). The optimization problem is subject 

to numerous constraints.  

For each well j, 

𝑞𝑔
𝑗

=  ∑  𝜃𝑝
𝑗

  ∙

𝑝 ∈ 𝒫𝑤ℎ
𝑗

 ℱ̂𝑗(𝑝) 
(28) 

𝑝𝑤ℎ
𝑗

=  ∑  𝜃𝑝
𝑗

  ∙

𝑝 ∈ 𝒫𝑤ℎ
𝑗

 𝑝 
(29) 

∑  𝜃𝑝
𝑗
 

𝑝 ∈ 𝒫𝑤ℎ
𝑗

= 1 
(30) 

(𝜃𝑝
𝑗
)

𝑝 ∈ 𝒫𝑤ℎ
𝑗   is a SOS2 (31) 

∀ 𝑝 ∈  𝒫𝑤ℎ
𝑗

,     𝜃𝑝
𝑗

≥ 0  (32) 

𝑝𝑤ℎ
𝑗

≥ 𝑝𝑑𝑠
𝑗

 (33) 

𝑝𝑅
𝑗

− 𝑝𝑤𝑓
𝑗

≤  ∆𝑝𝑚𝑎𝑥
𝑗

 (34) 

∆𝑝𝑗𝑢𝑚𝑝𝑒𝑟
𝑗

=  ∑     ∑ Ω𝑝,𝑞
𝑗

∙  ℋ̂𝑗  (𝑝, 𝑞)

𝑝 ∈ 𝒫𝑜𝑢𝑡
𝑗

𝑞 ∈ 𝒬𝑔
𝑗

 
(35) 
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𝑞𝑔
𝑗

=  ∑     ∑ Ω𝑝,𝑞
𝑗

∙ 𝑞

𝑝 ∈ 𝒫𝑜𝑢𝑡
𝑗

𝑞 ∈ 𝒬𝑔
𝑗

 
(36) 

𝑝𝑜𝑢𝑡
𝑗

=  ∑     ∑ Ω𝑝,𝑞
𝑗

∙ 𝑝

𝑝 ∈ 𝒫𝑜𝑢𝑡
𝑗

𝑞 ∈ 𝒬𝑔
𝑗

 
(37) 

∑     ∑ Ω𝑝,𝑞
𝑗

𝑝 ∈ 𝒫𝑜𝑢𝑡
𝑗

𝑞 ∈ 𝒬𝑔
𝑗

= 1 
(38) 

∀ 𝑞 ∈  𝒬𝑔
𝑗

, 𝜌𝑞
𝑗

=  ∑ Ω𝑝,𝑞
𝑗

𝑝 ∈ 𝒫𝑜𝑢𝑡
𝑗

 
(39) 

∀ 𝑝 ∈  𝒫𝑜𝑢𝑡
𝑗

, 𝛿𝑝
𝑗

=  ∑ Ω𝑝,𝑞
𝑗

𝑞 ∈ 𝒬𝑔
𝑗

 
(40) 

(𝜌𝑞
𝑗
)

𝑞 ∈ 𝒬𝑔
𝑗   is a SOS2 (41) 

(𝛿𝑝
𝑗
)

𝑝 ∈ 𝒫𝑜𝑢𝑡
𝑗   is a SOS2 (42) 

∀ 𝑞 ∈  𝒬𝑔
𝑗

, ∀ 𝑝 ∈  𝒫𝑜𝑢𝑡
𝑗

,     Ω𝑝,𝑞
𝑗

 ≥ 0 (43) 

𝑝𝑑𝑠
𝑗

= 𝑝𝑜𝑢𝑡
𝑗

+ ∆𝑝𝑗𝑢𝑚𝑝𝑒𝑟
𝑗

 (44) 

 

For each cluster c, 

𝑞𝑔
𝑐 =  ∑ 𝑞𝑔

𝑗

𝑗 ∈ 𝑐

 
(45) 

∆𝑝𝑡𝑟𝑢𝑛𝑘𝑙𝑖𝑛𝑒
𝑐 =  ∑ 𝜇𝑞

𝑐 ∙  𝒦̂𝑐  (𝑞)

𝑞 ∈ 𝒬𝑔
𝑐  

  
(46) 

𝑞𝑔
𝑐 =  ∑ 𝜇𝑞

𝑐 ∙  𝑞

𝑞 ∈ 𝒬𝑔
𝑐  

 
(47) 

∑ 𝜇𝑞
𝑐

𝑞 ∈ 𝒬𝑔
𝑐  

= 1 
(48) 

(𝜇𝑞
𝑐 )𝑞 ∈ 𝒬𝑔

𝑐   is a SOS2 (49) 

∀ 𝑞  ∈  𝒬𝑔
𝑐 , 𝜇𝑞

𝑐 ≥ 0 (50) 

𝑝𝑐 = 𝑝𝑠𝑒𝑝
𝑐 + ∆𝑝𝑡𝑟𝑢𝑛𝑘𝑙𝑖𝑛𝑒

𝑐  (51) 

∀𝑗 ∈ 𝑐, 𝑝𝑜𝑢𝑡
𝑗

=  𝑝𝑐  (52) 

Note that {𝑗 | 𝑗 ∈  𝑐} represents the sub-set of wells producing into cluster c. 

The gas plant model proposed in the previous section can be used as is, as most of the equations are already 

linear. Equations (7) to (26) are included in the MILP, except Eq. (19) which is nonlinear. In the MILP, we assume 

𝑧𝑐𝑜2

𝑏𝑝
, 𝑞𝑔

𝑠𝑡𝑎𝑏, 𝑧𝑐𝑜2
𝑠𝑡𝑎𝑏, 𝑟𝑜

𝑑𝑝𝑠
, and 𝑟𝑔

𝑑𝑝𝑠
 to be constant parameters.  Those parameters will be updated after solving the 

MILP, see next section. 

The gas rates entering the production separators can be computed as  follows: 

𝑞𝑔
𝑀𝑃 =  ∑ 𝑞𝑔

𝑗

𝑗 ∈ 𝑊𝐺

 (53) 
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𝑞𝑔
𝐻𝑃 =  ∑ 𝑞𝑔

𝑗

𝑗 ∈ 𝐷𝐺

 (54) 

Note that {𝑗 | 𝑗 ∈  𝑊𝐺} is the subset of wells producing in the wet gas reservoir and {𝑗 | 𝑗 ∈  𝐷𝐺} is the subset of 

wells producing in the dry gas reservoir. 

Some operational constraints have to be honored in the gas plant: 

𝑚̇𝑜,𝑠𝑒𝑝
𝐻𝑃 + 𝑚̇𝑜,𝑠𝑒𝑝

𝑀𝑃 ≤ 𝑚̇𝑜,𝑠𝑒𝑝
𝑚𝑎𝑥  (55) 

𝑞𝑔,𝑠𝑒𝑝
𝑀𝑃 +  𝑞𝑔

𝑠𝑡𝑎𝑏  ≤ 𝑞𝑐𝑜𝑚𝑝
𝑚𝑎𝑥  (56) 

𝑞𝑔,𝑠𝑒𝑝
𝐻𝑃 ≤ 𝑞𝐻𝑃

𝑚𝑎𝑥 (57) 

𝑞𝑔
𝑎 ≤ 𝑞𝑎𝑚𝑖𝑛𝑒

𝑚𝑎𝑥  (58) 

𝑞𝑐𝑜2
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ≤ 𝑞𝑐𝑜2

𝑚𝑎𝑥 (59) 

𝑚̇𝑜
𝑑𝑝𝑠

 ≤ 𝑚̇𝑜,𝑑𝑝𝑠
𝑚𝑎𝑥  (60) 

𝑚̇𝑜
𝑑𝑝𝑠

+ 𝑚̇𝑜,𝑠𝑒𝑝
𝐻𝑃 + 𝑚̇𝑜,𝑠𝑒𝑝

𝑀𝑃  ≤ 𝑚̇𝑠𝑡𝑎𝑏.
𝑚𝑎𝑥  (61) 

𝑞𝑔
𝑠𝑎𝑙𝑒𝑠

𝑉𝑚

 ∙ 𝑧𝑐𝑜2
𝑚𝑎𝑥  ≥ 𝑛𝑐𝑜2

𝑠𝑎𝑙𝑒𝑠 (62) 

Note that Eq. (62) ensures that the CO2 content in the sales gas is lower than the maximum value authorized by 

the sales gas specifications. Some additional sales gas specifications (dew point, gas heating value) are ignored in 

this paper, as those are usually not a bottleneck for production. 

 

3.2 MILP solving  
The MILP formulation is solved with a commercial linear solver implementing the simplex algorithm together 

with the branch & cut algorithm. Default solver settings are being used. The MIP gap is set to 1E-10.  Note that 

scaling of gas rates (expressed in millions of m3 instead of m3) is performed to reduce the range of matrix 

coefficients and avoid potential errors with the solver. This operation significantly improves the solver runtime 

and stability. 

 

3.3 Proposed bi-level optimization solution  
The proposed iterative bi-level optimization workflow is shown in Fig. 7.  As mentioned in the previous 

sections, to simplify the formulation some variables are assumed to be constant parameters. This approximation 

allows to reduce significantly the runtime, since Eq. (19) is relatively costly to linearize. The other quantities 𝑞𝑔
𝑠𝑡𝑎𝑏, 

𝑧𝑐𝑜2
𝑠𝑡𝑎𝑏, 𝑟𝑜

𝑑𝑝𝑠
 , and 𝑟𝑔

𝑑𝑝𝑠
 would also be relatively costly to estimate within the MILP. They are therefore assumed 

constant in the MILP. These estimated values can come from a previous run for example. 

 

 
Figure 7. Proposed iterative workflow to solve the optimization problem. 

 

The MILP is then solved, assuming these parameters to be constant. The optimal solution is fed to a full gas 

plant simulation model and new values of the paramters are computed. These new parameter values can be 
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compard to the estimates used to solve the MILP. If the difference 𝜖  with the initial values is too high, the 

parameter values are substituted by the computed values and the MILP is solved again. This procedure is repeated 

until convergence is achieved (𝜖 <  𝛿, with 𝛿 being some pre-defined convergence criteron). 

 

4. Results 
 

4.1 Base case  
The proposed solution is run with the base case constraint values given in Tab. 2.  

 

Table 2. Numerical values of constraints used in the base case. 

Parameter Value Parameter Value 

𝑝𝑠𝑒𝑝
𝐻𝑃  95 bar 𝑝𝑠𝑒𝑝

𝑀𝑃  75 bar 

𝑞𝑐𝑜𝑚𝑝
𝑚𝑎𝑥  10 MMsm3/d 𝑞𝐻𝑃

𝑚𝑎𝑥 2 MMsm3/d 

𝑞𝑎𝑚𝑖𝑛𝑒
𝑚𝑎𝑥  8 MMsm3/d 𝑞𝑐𝑜2

𝑚𝑎𝑥 0.5 MMsm3/d 

𝑚̇𝑜,𝑑𝑝𝑠
𝑚𝑎𝑥  10000 kg/h 𝑚̇𝑜,𝑠𝑒𝑝

𝑚𝑎𝑥  10000 kg/h 

𝑚̇𝑠𝑡𝑎𝑏.
𝑚𝑎𝑥  20000 kg/h 𝑧𝑐𝑜2

𝑚𝑎𝑥 2 % 

 

Results are shown in Fig. 8 and 9. We can see in Fig. 8 that some wells are producing at full potential (zero 

pressure drop across the choke valve) while other wells are being choked. In particular, wells from the wet gas 

reservoir are producing at maximum capacity, since their relatively low CO2-content can dilute the gas produced 

by the dry gas reservoir. Figure 9 shows the effect of the network on the results. The separator back pressure can 

be quite different from the separator pressure. This is particularly true for wells of the wet gas reservoir located 

30-45 km away from the GTP. The pressure at the wellhead of wet gas wells can be 5 to 10 bar higher than the HP 

pressure (95 bar), affecting significantly the well production of those wells and therefore the entire operations of 

the field. 

 

 
Figure 8. Optimal gas rates and choke setting for all production wells. 

 

Table 3 compares the optimal process parameter values with the constraints imposed by the system. It is clear 

that the limiting criterion is the maximum CO2 rate that can be removed, followed by the capacity of the amine 

plant. Solution to de-bottleneck the system include (1) upgrading the amine plant or (2) lowering the pressure of 

the separtor producing the wet gas (this would involve installing a compressor to compress the separator gas). Both 

A. Hoffmann Journal of Modeling and Optimization 2018;10(2):65-80

74



options lead to higher production but also involve expensive CAPEX. This economical analysis is not conducted 

in this paper. 

The proposed solution takes 3-5 iterations to converge. The execution time for a single iteration is ranging from 

10 to 13 sec. on an Intel© Core™ i7-5600 @ 2.60 GHz. Figure 10 shows the detail of the execution time. 

 

 
Figure 9. Optimal gas rates and pressue drops in clusters. 

 

Table 3. Optimal values of the process parameters. 

Parameter Optimal Value Constraint 

Gas rate through MP compressor 9.05 MMsm3/d 10 MMsm3/d 

Gas rate from HP separator 1.51 MMsm3/d 2 MMsm3/d 

Gas rate through amine plant 7.75 MMsm3/d 8 MMsm3/d 

Rate of CO2 removed 0.5 MMsm3/d 0.5 MMsm3/d 

CO2 content in sales gas  2 % 2 % 

Mass rate entering the satbilization tower 15325 kg/h 20000 kg/h 

Condensate mass rate from separators  7559 kg/h 10000 kg/h 

Condensate mass rate from DPS 7765 kg/h 10000 kg/h 

 

 

 
Figure 10. Runtime of each stage of the proposed optimization workflow. 
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The convergence of the proposed bi-level optimization solution is studied and results are shown in Fig. 11 for 

three different starting points (i.e. set of estimated parameter values). Figure 11 shows that even extremly bad 

starting point do not affect the convergence of the solution. The error is lower than 0.1 % after 4 iterations and 

lower than 0.001 % after 5 iterations. The objevtice converges even faster. After 3 iterations, the optimal value is 

reached, even for very bad starting point. 

  
(a) Convergence error (b) Objective value 

Figure 11. Convergence of the proposed solution for three different starting points. 

 

4.2 What-if scenarios 
In this section, the proposed solution is used to react to planned or unplanned events (e.g. compressor shut-

down, maintenance of critical processes, etc.). These events can be translated into a reduced capacity or additional 

constraint for the optimization. Table 4 summarizes the different what-if scenarios studied in this paper. 

 

Table 4. What-if scenarios studied in this paper. 

Scenario Description Sales gas rate Reduction from base case 

WIS-1 
WG trunkline closed for cleaning 

operations 
8.68MMsm3/d -1.47 MMsm3/d 

WIS-2 
Maintenance of stabilization tower 

(capacity reduction by 50%) 
9.14 MMsm3/d -1.01 MMsm3/d 

WIS-3 
MP compressor shutdown 

(capacity reduction by 50 %) 
6.16 MMsm3/d -3.99 MMsm3/d 

 

 
Figure 12. Well production rates for the base case and the three what-if scenarios (WIS) of Tab. 4. 

 

5. Conclusion 
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This paper presents a bi-level optimization solution suitable for short-term production optimization of gas fields 

with wells arranged in surface production network and producing into a common processing facility. A MILP, 

including hydraulic performances of the system, approximated using SOS2 piecewise linear models, and a 

simplified gas treatment plant model, is solved iteratively. Some key parameter in the gas plant are assumed 

constant and are calculated after solving the MILP using a full process simulation model. If different from the 

estimated values, the new values of the parameters are substituted in the MILP input data and the MILP is solved 

again. This process is repeated until convergence is achieved. 

The solution is applied to a gas field located in North Africa. The proposed solution successfully finds the 

optimal operations for a base case scenario and a set of what-if scenarios simulating planned and unplanned events. 

The runtime of the solution ranges from 30 sec. to 1 minute, making the proposed solution suitable for short-term 

production optimization and operational decision support.  

A study of the convergence and stability of the proposed solution is also conducted. It shows that the first 

estimated values of the process parameters have no influence on the convergence of the solution. After 3-4 

iterations, the convergence error is lower than 0.1 %.  

 

Nomenclature 

 
CAPEX Capital Expenditure 

CGR Condensates-Gas Ratio [stb/MMscf] 

DG Dry Gas 

ESP Electrical Submersible Pump 

GTP Gas Treatment Plant 

HP High Pressure 

MILP Mixed Integer Linear Programming 

MINLP Mixed Integer Nonlinear Programming 

MMscf Million standard cubic feet 

MMsm3 Million standard cubic meters 

MP Medium Pressure 

NPV Net Present Value [USD] 

scf Standard cubic feet 

sm3 Standard cubic meter 

SOS2 Special Ordered Set of type 2 

stb Stock Tank Barrel 

WG Wet Gas 

WIS What-If Scenario 

 

Unit Conversion 

 
Field Unit Conversion S.I. unit 

1 in. = 0.0254 m 

1 bbl = 0.1589873 m3 

1 cf = 0.028316846592 m3 

 

6. References 

 
[1] V. Gunnerud. On Decomposition and Piecewise Linearization in Petroleum Production Optimization. 

Department of Engineering Cybernetics, Norwegian University of Science and Technology, 2011. 

[2] B. Nygreen, M. Christiansena, K. Haugena, T. Bjørkvollc, Ø . Kristiansend. Modeling Norwegian petroleum 

production and transportation. Annals of Operations Research 82 (0), 1998: 251–268. 

[3] A. Hoffmann, S. Sunjerga, A. Teixeira, T. L. Silva, E. Camponogara. Benefits of Real-Time Production 

Optimization for a Complex Offshore Multi-Field Asset in Brazil. SPE Intelligent Oil and Gas Symposium 2017. 

SPE-187467. Society of Petroleum Engineers. 2017. 

[4] V.D. Kosmidis, J.D. Perkins, E.N. Pistikopoulos. Optimization of well oil rate allocations in petroleum fields. 

Industrial & Engineering Chemistry Research 43 (14), 2004: 3513–3527. 

[5] H.P. Bieker. Topics in Offshore Oil Production Optimization using Real-Time Data. Department of 

Engineering Cybernetics, Norwegian University of Science and Technology, 2007. 

[6] V. Gunnerud, B. Foss. Oil production optimization - a piecewise linear model, solved with two decompositions 

strategies. Computers and Chemical Engineering 34 (11), 2009: 1803-1812. 

A. Hoffmann Journal of Modeling and Optimization 2018;10(2):65-80

77



[7] A. Codas, S. Campos, E. Camponogara, V. Gunnerud, S. Sunjerga. Integrated production optimization of oil 

fields with pressure and routing constraints: The Urucu field. Computers and Chemical Engineering 46 (15), 2012: 

178-189. 

[8] A. Codas, E. Camponogara. Mixed-integer linear optimization for optimal lift-gas allocation with well-

separator routing. European Journal of Operational Research 217 (1), 2012: 222–231. 

[9] T.L. Silva, E. Camponogara. A computational analysis of multidimensional piecewise-linear models with 

applications to oil production optimization. European Journal of Operational Research 232 (3), 2014: 630–642. 

[10] E.O. Hulse, E. Camponogara. Robust formulations for production optimization of satellite oil wells. 

Engineering Optimization 49 (5), 2017: 846-863. 

[11] T.L. Silva, E. Camponogara, A.F. Teixeira, S. Sunjerga. Modeling of flow splitting for production 

optimization in offshore gas-lifted oil fields: simulation validation and applications. Journal Petroleum Science 

and Engineering 128, 2017: 86-97. 

[12] A. Hoffmann, M. Stanko. Short-term model-based production optimization of a surface production network 

with electric submersible pumps using piecewise-linear functions. Journal of Petroleum Science and Engineering 

158, 2017: 570-584. 

[13] H.P. Bieker, O. Slupphaug, and T.A. Johansen. Real time production optimization of offshore oil and gas 

production systems: A technology survey. Intelligent Energy Conference and Exhibition 2006. SPE-99446. 

Society of Petroleum Engineering. 2006. 

[14] K.T. Midthun. Optimization Models for Liberalized Natural Gas Markets. Department of Industrial 

Economics and Technology Management, Norwegian University of Science and Technology, 2007. 

[15] E. M. L. Beale, J. J. H. Forrest. Global optimization using special ordered sets. Mathematical Programming, 

10 (1), 1976: 52–69. 

 

©  2018 by the author(s). This work is licensed under a Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/). Authors retain copyright 

of their work, with first publication rights granted to Tech Reviews Ltd. 

 

Appendix A. Notations used in the MILP 
 

Table A.1. Optimization variables for wells, jumpers and trunklines. 

Variable Definition Variable Definition 

𝑞𝑔
𝑗
 Gas rate of well j 𝑝𝑤ℎ

𝑗
 Well head pressure of well j 

𝑝𝑑𝑠
𝑗

 Pressure after the choke of well j ∆𝑝𝑗𝑢𝑚𝑝𝑒𝑟
𝑗

 Pressure drop in jumper of well j 

𝑝𝑜𝑢𝑡
𝑗

 Outlet pressure of jumper j 𝑝𝑐  Pressure at inlet of trunkline c 

𝑞𝑔
𝑐  Gas rate in trunkline c ∆𝑝𝑡𝑟𝑢𝑛𝑘𝑙𝑖𝑛𝑒

𝑐  Pressure drop in trunkline c 

 

Table A.2. SOS2 modeling variables. 

Variable Definition 

𝜃𝑝
𝑗
 Weighting factor for well j 

𝛺𝑝,𝑞
𝑗

 Weighting factor for jumper j 

𝜌𝑞
𝑗
 SOS2 variable for jumper j 

𝛿𝑝
𝑗
 SOS2 variable for jumper j 

𝜇𝑞
𝑐  Weighting factor for trunkline c 

 

Table A.3. Optimization variables for the gas treatment plant. 

Variable Definition Variable Definition 

𝑞𝑔
𝑀𝑃 Gas rate entering the MP separator 𝑞𝑔

𝐻𝑃 Gas rate entering the HP separator 

𝑚̇𝑜,𝑠𝑒𝑝
𝑀𝑃  

Liquid mass rate at the MP separator 

outlet 
𝑚̇𝑜,𝑠𝑒𝑝

𝐻𝑃  
Liquid mass rate at the HP separator 

outlet 

𝑞𝑔,𝑠𝑒𝑝
𝑀𝑃  Gas rate at the MP separator outlet 𝑞𝑔,𝑠𝑒𝑝

𝐻𝑃  Gas rate at the HP separator outlet 
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𝑞𝑔
𝑖𝑛 Gas rate entering the amine plant 𝑞𝑔

𝑎 Gas rate entering the amine unit 

𝑞𝑔
𝑏𝑝

 Gas rate by-passing the amine unit 𝑞𝑔
𝑑𝑝𝑠

 Gas rate entering the dew point system 

𝑛𝑐𝑜2
𝐻𝑃  Quantity of CO2 from HP separator 𝑛𝑐𝑜2

𝑀𝑃  Quantity of CO2 from MP separator 

𝑛𝑐𝑜2
𝑠𝑡𝑎𝑏 Quantity of CO2 from stab. tower 𝑛𝑐𝑜2

𝑖𝑛  CO2 entering the amine plant 

𝑛𝑐𝑜2

𝑏𝑝
 CO2 by-passing the amine unit 𝑛𝑐𝑜2

𝑎  CO2 entering the amine unit 

𝑛𝑐𝑜2
𝑟𝑒𝑚𝑜𝑣𝑒𝑑  CO2 removed by the amine unit 𝑛𝑐𝑜2

𝑑𝑝𝑠
 CO2 entering the dew point system 

𝑞𝑐𝑜2
𝑟𝑒𝑚𝑜𝑣𝑒𝑑  Gas rate of CO2 removed 𝑚̇𝑜

𝑑𝑝𝑠
 Liquid mass rate at the outlet of the DPS 

𝑞𝑔
𝑠𝑎𝑙𝑒𝑠 Sales gas rate 𝑛𝑐𝑜2

𝑠𝑎𝑙𝑒𝑠 Quantity of CO2 in the sales gas 

 

Table A.4. Optimization parameters. 

Parameter Definition Parameter Definition 

𝑝𝑠𝑒𝑝
𝑐  

Pressure in the separator where 

trunkline c is producing 
𝑚̇𝑜,𝑠𝑒𝑝

𝑚𝑎𝑥  
Maximum liquid mass rate coming 

from production separators 

𝑞𝑐𝑜𝑚𝑝
𝑚𝑎𝑥  Maximum rate of MP gas compressor 𝑞𝐻𝑃

𝑚𝑎𝑥 
Maximum gas rate at the outlet of HP 

separator 

𝑞𝑎𝑚𝑖𝑛𝑒
𝑚𝑎𝑥  

Maximum gas rate passing in the 

amine unit 
𝑞𝑐𝑜2

𝑚𝑎𝑥 
Maximum gas rate of CO2 being 

removed in the amine unit 

𝑧𝑐𝑜2
𝑚𝑎𝑥 

Maximum molar fraction of CO2 in the 

final sales gas 
𝑉𝑚 

Molar volume of gas at standard 

conditions (23.69 sm3/kg-mol) 

𝑚̇𝑜,𝑑𝑝𝑠
𝑚𝑎𝑥  

Maximum liquid mass rate extracted in 

the dew point system 
𝑅𝑐𝑜2

 
Fraction of CO2 extracted in the amine 

unit 

𝑟𝑜
𝑤𝑔

 
Separator liquid formation factor for 

wet gas 
𝑟𝑔

𝑤𝑔
 

Separator gas formation factor for wet 

gas 

𝑟𝑜
𝑑𝑔

 
Separator liquid formation factor for 

dry gas 
𝑟𝑔

𝑑𝑔
 

Separator gas formation factor for dry 

gas 

𝑟𝑜
𝑑𝑝𝑠

 Liquid formation factor in the DPS 𝑟𝑔
𝑑𝑝𝑠

 Gas formation factor in the DPS 

𝑧𝑐𝑜2

𝑏𝑝
 

Molar fraction of CO2 in the mixture 

entering the amine plant 
𝑞𝑔

𝑠𝑡𝑎𝑏 
Gas rate coming from the stabilization 

tower 

𝑧𝑐𝑜2
𝑠𝑡𝑎𝑏 

Molar fraction of CO2 in the gas from 

the stabilization tower 
𝑧𝑐𝑜2

𝑑𝑔
 Molar fraction of CO2 in the dry gas 

𝑧𝑐𝑜2

𝑤𝑔
 Molar fraction of CO2 in the wet gas 𝑚̇𝑠𝑡𝑎𝑏.

𝑚𝑎𝑥  
Maximum mass rate entering the 

stabilization tower 

 

Table A.5. Nonlinear and piecewise linear functions. 

Function Definition Function Definition 

ℱ𝑗 
Nonlinear function representing the 

well performance of well j 
ℱ̂𝑗 

Piecewise linear function representing 

the well performance of well j 

𝒢𝑗 
Nonlinear function representing the 

flow performance of jumper j 
𝒢̂𝑗 

Piecewise linear function representing 

flow performance of jumper j 

ℋ𝑐  
Nonlinear function representing the 

flow performance of trunkline c 
ℋ̂𝑐 

Piecewise linear function representing 

flow performance of trunkline c 

 

Table A.6. Set of breakpoints used in the SOS2 models. 

Set Definition 

𝒫𝑤ℎ
𝑗

 Set of wellhead breakpoints for well j 

𝒬𝑔
𝑗
 Set of gas rate breakpoints for jumper j 

𝒫𝑜𝑢𝑡
𝑗

 Set of outlet pressure breakpoints for jumper j 

𝒬𝑔
𝑐  Set of gas rate breakpoints for trunkline c 
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Appendix B. Fluid data 
 

Table B.1. Peng-Robinson equation of state (EOS) used in this paper. Only non-zero BIP’s are shown. 

        BIP’s 

Comp. MW 
Tc  

(C) 

Pc 

(bar) 

Acentric 

Factor 

Specific 

Gravity 

Volume 

Translation 

Tb  

(C) 
N2 CO2 C1 

N2 28.01 -146.95 33.98 0.0370 0.2834 -0.16758 -195.9 0.000 0.000 0.0250 

CO2 44.01 30.97 73.74 0.2250 0.7619 0.00191 -88.3 0.000 0.000 0.1050 

C1 16.04 -82.59 45.99 0.0110 0.1461 -0.14996 -161.6 0.025 0.105 0.0000 

C2 30.07 32.17 48.72 0.0990 0.3298 -0.06280 -88.7 0.010 0.130 0.0000 

C3 44.10 96.68 42.48 0.1520 0.5098 -0.06381 -42.2 0.090 0.125 0.0000 

i-C4 58.12 134.70 36.40 0.1860 0.5704 -0.06197 -11.7 0.095 0.120 0.0000 

n-C4 58.12 151.97 37.96 0.2000 0.5906 -0.05393 -0.5 0.095 0.115 0.0000 

i-C5 72.15 187.24 33.81 0.2290 0.6295 -0.05646 28.0 0.100 0.115 0.0000 

n-C5 72.15 196.55 33.70 0.2520 0.6359 -0.02927 36.2 0.110 0.115 0.0000 

C6 84.03 238.34 32.33 0.2579 0.6890 -0.00253 65.6 0.110 0.115 0.0000 

C7 97.23 272.49 29.87 0.2931 0.7189 0.01609 94.3 0.110 0.115 0.0074 

C8 110.99 302.77 27.45 0.3332 0.7400 0.03424 121.5 0.110 0.115 0.0087 

C9 124.54 329.90 25.24 0.3755 0.7558 0.05713 147.2 0.110 0.115 0.0100 

C10 137.95 354.07 23.33 0.4174 0.7686 0.07862 170.9 0.110 0.115 0.0112 

C11 151.30 375.99 21.66 0.4591 0.7794 0.09887 193.0 0.110 0.115 0.0124 

C12 164.59 396.00 20.21 0.4967 0.7888 0.11788 213.8 0.110 0.115 0.0136 

C13 177.80 414.37 18.93 0.5354 0.7971 0.13563 233.3 0.110 0.115 0.0147 

C14 190.92 431.33 17.79 0.5734 0.8045 0.15216 251.7 0.110 0.115 0.0157 

C15 203.97 447.04 16.79 0.6106 0.8112 0.16750 269.0 0.110 0.115 0.0167 

C16 216.92 461.67 15.89 0.6470 0.8174 0.18171 285.3 0.110 0.115 0.0176 

C17 229.78 475.33 15.09 0.6826 0.8231 0.19483 300.8 0.110 0.115 0.0185 

C18 242.55 488.12 14.37 0.7174 0.8284 0.20694 315.5 0.110 0.115 0.0193 

C19 255.21 500.15 13.73 0.7515 0.8333 0.21809 329.5 0.110 0.115 0.0201 

C20+ 306.81 543.46 11.61 0.8852 0.8507 0.25565 380.7 0.110 0.115 0.0229 

 

Table B.2. Gas compositions used in this paper. 

Comp. Wet Gas Dry Gas  

N2 9.005 2.184 mol-% 
CO2 2.832 7.337 mol-% 
C1 70.946 85.628 mol-% 
C2 9.910 3.542 mol-% 
C3 3.693 0.925 mol-% 
i-C4 0.411 0.119 mol-% 
n-C4 1.095 0.160 mol-% 
i-C5 0.310 0.071 mol-% 
n-C5 0.331 0.033 mol-% 
C6 0.222 0.040 mol-% 
C7 0.290 0.052 mol-% 
C8 0.296 0.054 mol-% 
C9 0.206 0.037 mol-% 
C10 0.155 0.028 mol-% 
C11 0.100 0.018 mol-% 
C12 0.066 0.012 mol-% 
C13 0.048 0.009 mol-% 
C14 0.029 0.005 mol-% 
C15 0.020 0.004 mol-% 
C16 0.012 0.002 mol-% 
C17 0.008 0.001 mol-% 
C18 0.006 0.001 mol-% 
C19 0.004 0.001 mol-% 
C20+ 0.007 0.001 mol-% 
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