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Abstract: This paper estimates the magnetic flux density components in the slotless single-sided axial flux 
permanent-magnet synchronous machines (SAFPMSMs). For this purpose, a 2-D analytical model based on the 
sub-domain method is utilized in which the cross-section of the presented machine is divided into the seven sub-
regions such as stator side exterior, stator, winding, air-gap, permanent-magnets (PMs), mover and mover side 
exterior. Based on the Maxwell equations, the related partial differential equations (PDEs) of magnetic flux density 
components are formed in each sub-region which are identified as the essential step for obtaining the machines 
quantities. According to the superposition theorem, two separate steps are implemented for calculating the 
magnetic flux density components. In the first step, open circuit analysis includes various type of magnetization 
patterns, i.e. parallel, ideal Halbach, 2-segment Halbach and bar magnet in shifting direction is investigated and 
armature currents are zero and in the second step PMs are inactive and the magnetic flux density components are 
originated due to only armature reaction. Eventually, 2-D finite element method (FEM) is determined to confirm 
the accuracy of the presented analytical approach and an acceptable agreement between the analytical and FEM 
models can be observed. 
Keywords: Analytical model; Axial flux motor; Magnetic flux density; Maxwell equations; Halbach 
magnetization. 

 
 
1. Introduction 

 
The increased demand for electric machines and their significant applications has motivated widespread 

research to improve their performance. Permanent-magnet machines (PMs) and their characteristic features such 
as high power density and efficiency due to ohmic loss reduction have become truly remarkable among the 
electrical machines [1-3]. According to the direction of the magnetic flux, PM- machines are divided into two 
types: axial flux machines (z-direction flux) and radial flux machines (r-direction flux) [4]. Axial flux permanent-
magnet machines (AFPMs) plays a significant role in a wide range of industrial applications for their considerable 
advantages such as high power-to-weight ratio and having more number of poles cause to widely use of them in 
compact fans and wind turbines [5]. The necessity for a compactable structure made AFPMs a noticeable candidate 
in the electric vehicles manufacturing [6]. Axial flux machines include various type of structures and four general 
structures can mention for them as single stator single rotor (SSR) or single-sided, double-sided with internal rotor-
external stator (AFIR), double-sided with internal stator-external rotor (TORUS) and multi-stator multi-rotor that 
each type has its advantages and disadvantages [7-8].  

Numerical and analytical models in electrical machines are known for analyzing and predicting the machine 
quantities. The analytical model, if possible, is preferred due to the less computational time which is essential in 
the optimization goals with too many iteration numbers. Also, the user can realize the machine behavior according 
to the related analytical expression. Besides, for changing the dimensions in the numerical model it is necessary 
to reconstruct the simulation graphic file while the analytical model is flexible for changing these parameters [9]. 
In recent year, several analytical models are developed for electrical machines. A 2-D analytical method for 
predicting the open circuit field distribution in the air-gap region for internal and external topologies in polar 
coordinates has provided in [10]. The same study has been investigated for parallel magnetization patterns in [11]. 
In [12,13] a 3-D analytical magnetic field analysis based on magnetic scalar potential and modified Bessel 
functions have been prepared. The Quasi-3-D electromagnetic field analysis of AFPMs has reported in [14]. A 3-
D analysis is more complex and highly time- consuming particularly in designing structure and the 2-D analysis, 
if possible, is preferred rather than 3-D models [15]. Analytical modeling for a double-sided AFPM is presented 
in [16,17]. Analytical modeling for calculating the air gap flux density, back-EMF and torque which consider the 
transition zone between poles for micro-motors is presented in [18].  
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Permeability and magnetization patterns are two main challenges of the previous papers in which for 
simplifying the analytical equations, the permeability of cores are assumed infinite and the flux density distribution 
in the cores, which is fundamental quantity for defining the core loss, is not realized or the analyzes are limited to 
the specific magnetization patterns. For instance, in [19], the authors presented an expression to find the axial field 
in the AFPMs assuming that the core permeability is infinite. An analytical method to calculate the no-load and 
the armature reaction field for a single-sided AFPMSG has been studied in [20] which the core permeability is 
assumed infinite. In [21], the authors investigated the analytical modeling of a double-sided axial flux permanent-
magnet synchronous generator (AFPMSG). Because of satisfying the boundary conditions is difficult in the radial 
direction, they tried to develop the proposed method on an exact 2-D solution for magnetic field calculations to 
find EMF, cogging torque and electromagnetic torque. The governing equations are based on magnetic vector 
potential calculation and in the form of 𝜃𝜃 and z components. They only analyzed parallel magnetization pattern 
for PMs. In [22] an analytical prediction of armature reaction field distribution in a slotted PM linear synchronous 
machine based on sub-domain model has reported that the permeability of the core is investigated infinite and PMs 
flux density distribution is not considered. PMs and armature reaction field distributions considering parallel 
magnetization pattern in a single-sided coreless AFPMSG for a direct-coupled wind energy system based on 
Laplace/Poisson equations in terms of y and 𝜃𝜃  components and the same work is prepared in [23]. A novel 
approach for analytical modeling of a slotted AFPMs is provided in [24] where the permeability of cores is 
assumed infinite.  

The main contribution of this paper is to define an accurate 2-D analytical model in which the finite permeability 
for iron cores are assumed. Also, various magnetization patterns such as parallel, ideal Halbach, 2-segment 
Halbach and bar magnets in shifting directions magnetization patterns are investigated to predict the magnetic flux 
density components originated by PMs and armature reaction in the proposed SAFPMSMs. 

This article is organized as follows: 
In section 2 the proposed analytical procedure is presented and section 3 includes the analytical and numerical 

models for the tangential and normal components of magnetic flux density due to armature current and PMs in 
each sub-region to validate the proposed analytical model. Some conclusions are given in section4. 

 
2. Proposed method  

    
Fig.1 (a) shows the 3-D configuration of the proposed SAFPMSM and it is correct to analyze a 2-D model 

instead of 3-D one due to the symmetry of the flux path throughout the motor under the study. Fig. 1(b) illustrates 
the determined 2-D cross-section to analyze the magnetic flux density component. It is noted that for solving all 
Maxwell equations in the proposed machine in the Cartesian coordinates is analyzed and in which x, y and z 
represent θ, z and r in polar coordinate, respectively. Utilizing the sub-domain method results in the seven sub-
region and considering a series of assumptions and the basic electromagnetic Maxwell’s equations lead to 
obtaining the related PDEs of the magnetic vector potential in each sub-region that yield to a set of Laplace and 
Poisson equations and applying curl on the obtained magnetic vector potential results in achieving the magnetic 
flux density components in each sub-region. Based on the governing PDEs and a set of boundary conditions, a 
general and particular solution of magnetic flux density in each sub-region are deduced. 
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(a) 3-D model                                                  (b) 2-D cross section 

Fig. 1. 3-D and 2-D structures of the proposed SAFPMSM 
 
2.1 The applied assumptions 

By assuming x, y and z instead of θ, z and r respectively, the following assumptions are formed to present 
analytical model: 

1) The end effects are ignored.  
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2) In the case of 2D problems, it is assumed that  𝑨𝑨 = [0, 0,𝐴𝐴𝑧𝑧(𝑥𝑥, 𝑦𝑦)] , 𝑴𝑴 = �𝑀𝑀𝑥𝑥(𝑥𝑥),𝑀𝑀𝑦𝑦(𝑥𝑥), 0� and  
𝑩𝑩 = �𝐵𝐵𝑥𝑥(𝑥𝑥, 𝑦𝑦),𝐵𝐵𝑦𝑦(𝑥𝑥, 𝑦𝑦), 0� where A, M and B are magnetic vector potential, magnetization pattern and magnetic 
flux density, respectively. 

3) All materials are isotropic. 
4) The media have finite relative permeability. 
5) The saturation effects are neglected. 
6) The motor has a slotless stator structure. 
7) The eddy current reaction field is neglected. 

 
2.2 Governing PDEs 

According to the Maxwell equations the related PDEs in each sub-region of the motor under the study are 
deduced as follow:  

 
−∇2𝑨𝑨 = 𝜇𝜇0𝜇𝜇𝑟𝑟𝑱𝑱 + 𝜇𝜇0∇ × 𝑴𝑴                                                                                                                                  (1) 
 

where 𝑱𝑱 is the armature current density vector, that is zero in the case of open-circuit field calculations and M is 
magnetization vector which is zero for obtaining magnetic flux density components due to armature reaction.  
 
2.3 Magnetic flux density originated by PMs 

To obtain the magnetic flux density originated due to PMs, armature currents must be zero (𝑱𝑱 = 0) and two 
various kind of PDEs are obtained to estimating the magnetic flux density components in all sub-regions. The first 
category includes rotor-side exterior (er), air-gap (a), winding (w), stator (s) and stator-side exterior (es) that the 
related PDEs are Laplace equations as follow: 

 
𝛻𝛻2𝑨𝑨𝒊𝒊 = 0                         i={er, r, a, w, s, es}                                                                                                      (2) 
 
The second PDEs is Poisson one that allocated to PM sub-region and describe as follow: 
 
∇2𝑨𝑨𝑃𝑃𝑃𝑃 = −𝜇𝜇0∇ × 𝑴𝑴                                                                                                                                             (3) 
 
where 𝜇𝜇0 is free space permeability and M is defined as its Fourier series expansions of the tangential and 

normal components of each magnetization patterns as: 
 
𝑴𝑴 = 𝑀𝑀𝑥𝑥𝑎𝑎𝑥𝑥 + 𝑀𝑀𝑦𝑦𝑎𝑎𝑦𝑦                                                                                                                                              (4) 

𝑀𝑀𝑥𝑥(𝑥𝑥) = ∑ 𝑚𝑚𝑥𝑥𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑛𝑛𝑥𝑥)∞
𝑛𝑛=1                                                                                                                             (5) 

𝑀𝑀𝑦𝑦(𝜃𝜃) = ∑ 𝑚𝑚𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑛𝑛𝑥𝑥)∞
𝑛𝑛=1                                                                                                                             (6) 

 
where 𝛼𝛼𝑛𝑛 = 𝑛𝑛𝑛𝑛/𝜏𝜏𝑝𝑝 in which 𝜏𝜏𝑝𝑝 is pole pitch, 𝑚𝑚𝑥𝑥𝑥𝑥 and 𝑚𝑚𝑦𝑦𝑦𝑦 are Fourier series components and these components, 
as well as magnetization patterns, are shown in Fig. 2.  

Utilizing separation variable method in (2) and (3) leads to obtain the following expression for the magnetic 
vector potential in two illustrated sub-regions: 

 
𝐴𝐴𝑧𝑧𝑖𝑖 (𝑥𝑥, 𝑦𝑦) = ∑ (𝑎𝑎𝑛𝑛𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦))∞

𝑛𝑛=1 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑑𝑑𝑛𝑛𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦)) 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑛𝑛𝑥𝑥)                                                                                                                                                    
(7) 

𝐴𝐴𝑧𝑧𝑃𝑃𝑃𝑃(𝑥𝑥, 𝑦𝑦) = ∑ (𝑎𝑎𝑛𝑛𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝜇𝜇0
𝛼𝛼𝑛𝑛
𝑚𝑚𝑥𝑥𝑥𝑥)∞

𝑛𝑛=1 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) +

𝑑𝑑𝑛𝑛𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) − 𝜇𝜇0
𝛼𝛼𝑛𝑛
𝑚𝑚𝑦𝑦𝑦𝑦) 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑛𝑛𝑥𝑥)              (8) 

 
Magnetic flux density components in each sub-regions can easily deduce by applying curl on the obtained 

magnetic vector potential and the tangential and normal components of magnetic flux density can define as: 
 
𝐵𝐵𝑥𝑥 = 𝜕𝜕𝐴𝐴𝑧𝑧

𝜕𝜕𝜕𝜕
                                                    (9) 

𝐵𝐵𝑦𝑦 = −𝜕𝜕𝐴𝐴𝑧𝑧
𝜕𝜕𝜕𝜕

                                                           (10) 
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It is noted that for showing the rotor motion x must be substituted by 𝑥𝑥 − 𝑑𝑑 which 𝑑𝑑 is the rotor motion and 
illustrated as: 

 
𝑑𝑑 =  𝑣𝑣𝑣𝑣 + 𝑑𝑑0                                                                               (11) 
 

where 𝑣𝑣 is converted rotor angular velocity (𝜔𝜔)  to the linear translation speed, t is time and 𝑑𝑑0 is initial rotor 
position.   
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Fig. 2. Magnetization patterns and Fourier series components for the proposed SAFPMSM 
 
2.4 Magnetic flux density originated by armature currents 

To obtain magnetic flux density originated by armature reaction PMs must be inactive (M=0). According to the 
Laplace and Poison equations, similar to the last section, two categories can define for obtaining the related 
magnetic vector potential in each sub-region. The first group includes rotor-side exterior, rotor, PMs, air-gap, stator 
and stator-side exterior in which the PDEs in these regions are Laplace one and PDEs for them similar to (2) is 
realized as: 

 
𝛻𝛻2𝑨𝑨𝒊𝒊 = 0                         i={er, r, PMs, a, s, es}                        (12) 
 
These PDEs in the winding sub-regions is Poison one and extracted as: 
 
𝛻𝛻2𝑨𝑨𝑤𝑤 = −𝜇𝜇0𝑱𝑱                             (13) 
 
Like magnetization patterns, the current density is introduced by its Fourier series expansion as follow: 
 
𝐽𝐽(𝑥𝑥, 𝑡𝑡) = ∑ 𝐽𝐽1𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑛𝑛𝑥𝑥)∞
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where 𝐽𝐽1𝑛𝑛 and 𝐽𝐽2𝑛𝑛 are Furrier series components of current density. By exciting three sinusoidal currents into the 
winding coils the current density Furrier components are calculated as: 
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𝐽𝐽1𝑛𝑛 = − 2𝑁𝑁𝑡𝑡𝜏𝜏𝑝𝑝
3(𝑦𝑦2−𝑦𝑦3)

𝑐𝑐𝑐𝑐𝑐𝑐(2𝑛𝑛𝑛𝑛3 )−𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛3 )

𝑛𝑛𝑛𝑛
× (𝑖𝑖𝑎𝑎 + 𝑖𝑖𝑏𝑏cos(2𝑛𝑛𝑛𝑛

3
) + 𝑖𝑖𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐( 2𝑛𝑛𝑛𝑛

3
))       (15) 

𝐽𝐽2𝑛𝑛 = − 2𝑁𝑁𝑡𝑡𝜏𝜏𝑝𝑝
3(𝑦𝑦2−𝑦𝑦3)

𝑐𝑐𝑐𝑐𝑐𝑐(2𝑛𝑛𝑛𝑛3 )−𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛3 )

𝑛𝑛𝑛𝑛
× (−𝑖𝑖𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠( 2𝑛𝑛𝑛𝑛

3
) + 𝑖𝑖𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠( 2𝑛𝑛𝑛𝑛

3
)).                    (16) 

 
where 𝑁𝑁𝑡𝑡 is the number of turns for each coil and applied current in the proposed machine are defined as: 

 
𝑖𝑖𝑎𝑎(𝑡𝑡) = 𝐼𝐼𝑚𝑚 sin(𝜔𝜔𝜔𝜔)             (17) 

𝑖𝑖𝑏𝑏(𝑡𝑡) = 𝐼𝐼𝑚𝑚 sin �𝜔𝜔𝜔𝜔 − 2𝜋𝜋
3
�             (18) 

𝑖𝑖𝑐𝑐(𝑡𝑡) = 𝐼𝐼𝑚𝑚 sin �𝜔𝜔𝜔𝜔 + 2𝜋𝜋
3
�             (19) 

 
where 𝐼𝐼𝑚𝑚 is the maximum phase current. Substituting current density Furrier series expansion in (14) and solving 
PDEs in each sub-region leads to obtain the following equation for magnetic vector potential in each sub-region 
due to only armature current: 

 
𝐴𝐴𝑧𝑧𝑖𝑖 (𝑥𝑥, 𝑦𝑦) = ∑ (𝑎𝑎𝑛𝑛𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦))∞

𝑛𝑛=1 𝑐𝑐𝑐𝑐𝑠𝑠(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑑𝑑𝑛𝑛𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦)) 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑛𝑛𝑥𝑥)   
              (20) 

𝐴𝐴𝑧𝑧𝑤𝑤(𝑥𝑥, 𝑦𝑦) = ∑ (𝑎𝑎𝑛𝑛𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝜇𝜇0
𝛼𝛼𝑛𝑛2
𝐽𝐽2𝑛𝑛)∞

𝑛𝑛=1 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) +     

𝑑𝑑𝑛𝑛𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝜇𝜇0
𝛼𝛼𝑛𝑛2
𝐽𝐽1𝑛𝑛) 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝑛𝑛𝑥𝑥)           (21) 

 
 Similar to the previous section, applying curl on the obtained magnetic vector potential leads to determine the 

magnetic flux density components. 
 
2.5 The boundary conditions 

By obtaining PDEs, the magnetic potential coefficients in each equation of the proposed sub-regions remain 
unknown. On the other hand, the aforementioned PDEs need to satisfy the boundary conditions at the interface 
between two adjacent sub-regions. In the presented axial flux motor, the boundary conditions at each interface can 
be written as: 

 
𝐻𝐻𝑥𝑥𝑖𝑖 (𝑥𝑥, 𝑦𝑦)|𝑦𝑦=𝑌𝑌 = 𝐻𝐻𝑥𝑥𝑖𝑖+(𝑥𝑥, 𝑦𝑦)|𝑦𝑦=𝑌𝑌            (22) 

𝐵𝐵𝑦𝑦𝑖𝑖 (𝑥𝑥, 𝑦𝑦)|𝑦𝑦=𝑌𝑌 = 𝐵𝐵𝑦𝑦𝑖𝑖+(𝑥𝑥, 𝑦𝑦)|𝑦𝑦=𝑌𝑌           (23) 
 

where i and i+ represent two adjacent sub-regions and these boundary conditions can be formed as: 
 

(𝑖𝑖, 𝑖𝑖+,𝑌𝑌) = {(𝑒𝑒𝑒𝑒, 𝑟𝑟, 0), (𝑟𝑟, 𝑝𝑝𝑝𝑝,𝑦𝑦0), (𝑝𝑝𝑝𝑝, 𝑎𝑎, 𝑦𝑦1), (𝑎𝑎,𝑤𝑤, 𝑦𝑦2),(𝑤𝑤, 𝑠𝑠,𝑦𝑦3), (𝑠𝑠, 𝑒𝑒𝑒𝑒, 𝑦𝑦4)}        (24) 
 

To have limited results of the magnetic flux density components, some of the unknown coefficients must be 
zero like 𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑛𝑛𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒 = 𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒 = 0 . Therefore, 24 unknown coefficients such as 𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒 , 𝑐𝑐𝑛𝑛

,𝑒𝑒𝑒𝑒 , 𝑎𝑎𝑛𝑛𝑟𝑟 , 𝑏𝑏𝑛𝑛𝑟𝑟 ,
𝑐𝑐𝑛𝑛𝑟𝑟 ,𝑑𝑑𝑛𝑛𝑟𝑟 , 𝑎𝑎𝑛𝑛𝑃𝑃𝑃𝑃 , 𝑏𝑏𝑛𝑛𝑃𝑃𝑃𝑃, 𝑐𝑐𝑛𝑛𝑃𝑃𝑃𝑃,𝑑𝑑𝑛𝑛𝑃𝑃𝑃𝑃, 𝑎𝑎𝑛𝑛𝑎𝑎 , 𝑏𝑏𝑛𝑛𝑎𝑎, 𝑐𝑐𝑛𝑛𝑎𝑎,𝑑𝑑𝑛𝑛𝑎𝑎, 𝑎𝑎𝑛𝑛𝑤𝑤 , 𝑏𝑏𝑛𝑛𝑤𝑤, 𝑐𝑐𝑛𝑛𝑤𝑤 ,𝑑𝑑𝑛𝑛𝑤𝑤, 𝑎𝑎𝑛𝑛𝑠𝑠 , 𝑏𝑏𝑛𝑛𝑠𝑠 , 𝑐𝑐𝑛𝑛𝑠𝑠 ,𝑑𝑑𝑛𝑛𝑠𝑠 , 𝑏𝑏𝑛𝑛𝑒𝑒𝑒𝑒,𝑑𝑑𝑛𝑛𝑒𝑒𝑒𝑒 are available and 24 independent 
equations are necessary to predict the magnetic flux density components in each sub-region.  Applying the 
boundary conditions result in forming these 24 equations and all these simultaneous algebraic equations are written 
in the Appendix.  
 
3.  Case study 

 
To validate the proposed analytical model, the FEM model is utilized and analytical results of magnetic flux 

density components are compared with those obtained from FEM. Table 1 lists the specifications of the motor 
under the study that is applied to reveal the accuracy of the analytical model. Fig. 3 illustrates analytical and 
numerical results of the normal and tangential components of magnetic flux density in all sub-regions of the 
proposed axial flux motor due to only four mentioned magnetization patterns and an acceptable agreement between 
these two models is observable. The interesting point in the three Halbach magnetization patterns is related to the 
magnetic flux path that it passes manly through the PMs and the magnetic flux in the rotor is negligible and it is 
possible to replace the rotor with other material having less weight, less volume and cheaper than the ferromagnetic 
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materials. Also, it is evident that the ideal Halbach magnetization includes less THD compared with other 
magnetization patterns. 

 
Table 1. Main design parameters of the proposed axial flux motor under the study 

Values Symbols Parameters 
8 mm 𝑦𝑦0 Rotor back iron height 
7 mm 𝑦𝑦1 − 𝑦𝑦0 PM height 
1.5 mm 𝑦𝑦2 − 𝑦𝑦1 Air-gap height 
8 mm 𝑦𝑦3 − 𝑦𝑦2 Winding height 
10 mm 𝑦𝑦4 − 𝑦𝑦3 Stator back iron height 
1500 𝜇𝜇𝑟𝑟𝑠𝑠 Stator relative permeability 
1000 𝜇𝜇𝑟𝑟𝑟𝑟 Mover relative permeability 
1.04 𝜇𝜇𝑟𝑟

𝑝𝑝𝑝𝑝 PM relative permeability 
40 mm 𝜏𝜏𝑚𝑚 PM width for the parallel pattern 
50 mm 𝜏𝜏𝑝𝑝 Pole pitch 
4 𝑝𝑝 Number of poles 
0.35 𝑘𝑘𝑥𝑥 x-direction magnetized PM width to the pole pitch ratio for 2-segment Halbach 
0.65 𝑘𝑘𝑦𝑦 y-direction magnetized PM width to the pole pitch ratio for 2-segment Halbach 
1.1 T 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 PM Remanence flux density 
4A 𝐼𝐼𝑚𝑚 Peak armature current 
66 𝑁𝑁𝑡𝑡 Number of turns per coil 
2 𝑁𝑁𝑐𝑐 Number of coils per phase 
0.5 𝐾𝐾𝑓𝑓 Filling factor 

 

 Parallel Ideal Halbach 2-segment Halbach Bar magnets in 
shifting directions 
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o Numerical results of the normal component of the flux density, ×  Numerical results of the tangential component of the 
flux density, - - Analytical results of the tangential components of the flux density, −  Analytical results of the normal 
component of the flux density  
Fig. 3. Analytical and numeric results of flux density distribution due to only PMs in proposed SAFPMSM 

Another exciting point in the simulation procedure is related to the time of the simulation that for the analytical 
model is 13 times less than the numerical one. It means in the design stage and optimization problem includes too 
many iterations, times can be saved by implementing the analytical model, if possible, instead of the numerical 
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model. Fig. 4 describes the magnetic flux density distributions due to the only armature reaction current that the 
slotless structure causes to increase the magnetic air-gap and the magnetic flux density components originated by 
armature currents are less than these components due to the PMs. 
 

 

 

  
Mover PM 

  
Air-gap Stator 

- - Analytical results of the tangential component of the flux density, ‒ Analytical results of the normal component of the 
flux density, o Numerical results of the normal component of the flux density, × Numerical results of the tangential 
component of the flux density 

Fig. 4. Flux density distribution due to only armature current in the motor under the study 
 
4. Conclusions 

 
This paper focuses on the analytical magnetic field calculations for the slotless single-sided axial flux 

permanent-magnet synchronous machines with surface mounted magnets.  Sub-domain method is applied due to 
its accuracy and by this model the effects of armature currents and PMs with different magnetization patterns (i.e. 
parallel, ideal Halbach, 2-segment and bar magnets in shifting directions patterns) on the magnetic flux density 
distribution in all sub-regions like rotor, PMs, air-gap, winding and stator are scrutinized. Finally, both PM and 
armature reaction results are confirmed by the FEM method. Also, less computational time of the analytical model 
rather than the numerical one is discussed and the extracted results revealed that the computational time of the 
analytical model was 13 times less than that of numeric. 
 
5. Appendix 

   
 Imposing the boundary conditions between two adjacent regions and applying the defined symbols in Table 1 

lead to the following 24 equations: 
a: Interface between rotor-side exterior and rotor at 𝑦𝑦 = 0 

0r er r ra a bn n nrµ− − + =  (25) 

0r er r rc c dn n nrµ− − + =  (26) 

0er r ra a bn n n− + + =  (27) 

0er r mc c dn n n− + + =  (28) 
b: Interface between rotor and PMs at 𝑦𝑦 = 𝑦𝑦0 

0
0 00 0( ) ( )sinh cosh( ) sinh cosh( ) cos( )n nn n

r mpm pm pm pmr r r r r xny b y y b y dn n n n nr r r r n
a a µ µµ α µ α µ α µ α αα− −− + =  (29) 

0
0 00 0( ) ( )sinh cosh( ) sinh cosh( ) sin( )n nn n d

r mpm pm pm pmr r r r r xny d y y d yn n n n nr r r r n
c c µ µµ α µ α µ α µ α αα− −− + =  (30) 

0
0 00 0( ) ( )sinh cosh( ) sinh cosh( ) cos( )n nn n d

mynpm pmr ry b y y b yn n n n nn
a a

µ
α α α α αα− −− =+ −  (31) 

0
0 00 0( ) ( )sinh cosh( ) sinh cosh( ) sin( ).n nn n

mynpm pmr ry d y y d yn n n n nn
c c

µ
α α α α α δα− − =− −  (32) 

 
 

 

 

 

 

 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
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c: Interface between PMs and air-gap at 𝑦𝑦 = 𝑦𝑦1 
0

1 11 1( ) ( )sinh cosh( ) sinh cosh( ) cos( )n r r nn n
a
n

mpm pm pm pm a xny b y y b y dn n n nn
a a µα α α α ααµ µ− =− +  (33) 

0
1 11 1( ) ( )sinh cosh( ) sinh cosh( ) sin( )n r r nn n

mpm pm pm pma a xny d y c y d y dn n n nn n
c µα α α α ααµ µ −− =− +  (34) 

0
1 11 1( ) ( )sinh cosh( ) sinh cosh( ) cos( )n nn n

a
n

mynpm pm ay b y y b y dn n n nn
a a

µ
α α α α αα− − =+ +  (35) 

0
1 11 1( ) ( )sinh cosh( ) sinh cosh( ) sin( ).n nn n

a
n

mynpm pm ay d y y d y dn n n nn
c c

µ
α α α α αα+ −=− −  (36) 

d: Interface between air-gap and winding at 𝑦𝑦 = 𝑦𝑦2 
sinh( ) cosh( ) sinh( ) cosh( ) 02 2 2 2

a a w w
n n nna y b y a y b yn n n nα α α α− − + =  (37) 

sinh( ) cosh( ) sinh( ) cosh( ) 02 2 2 2
a a w w
n n nnc y d y c y d yn n n nα α α α− − + =  (38) 

0 2
2

sinh( ) cosh( ) sinh( ) cosh( )2 2 2 2
n

n

a a w w
n n nn

Ja y b y a y b yn n n n
µα α α α
α

− − + + = −  (39) 

0 1
2

sinh( ) cosh( ) sinh( ) cosh( )2 2 2 2
n

n

a a w w
n n nn

Jc y d y c y d yn n n n
µα α α α
α

− − + + = −  (40) 

e: Interface between winding and stator at 𝑦𝑦 = 𝑦𝑦3 

3 33 3( ) ( )sinh cosh( ) sinh cosh( ) 0n nn n
ws w s s sa y b y a y b yn n n nr rµ α µ α α α− − + =  (41) 

3 33 3( ) ( )sinh cosh( ) sinh cosh( ) 0n nn n
s w s w s sc y d y c y d yn n n nr rµ α µ α α α− − + =  (42) 

3 33 3( ) ( ) 0 2sinh cosh( ) sinh cosh( ) 2n nn n
Jw w s s na y b y a y b yn n n n
n

µ
α α α α

α

−
+ − − = −  (43) 

3 33 3( ) ( ) 0 1sinh cosh( ) sinh cosh( ) 2n nn n
Jw w s s nc y d y c y d yn n n n
n

µ
α α α α

α

−
+ − − = −  (44) 

f: Interface between stator and stator-side exterior at 𝑦𝑦 = 𝑦𝑦4 

4 44sinh( ) cosh( ) cosh( ) 0n nyn
s s s esa b y b yn n r nα α µ α− + =  (45) 

4 44sinh( ) cosh( ) cosh( ) 0n nyn
s s s esc d y d yn n r nα α µ α− + =  (46) 

4 44sinh( ) cosh( ) cosh( ) 0n nyn
s s esa b y b yn n nα α α+ − =  (47) 

4 44sinh( ) cosh( ) cosh( ) 0n nyn
s s sc d y d yn n nα α α+ − =  (48) 
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