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Abstract: The hole expansion ratio (HER) is an important material property which defines the extent of edge 
formability of sheet metals. The stress states observed at the hole edge after the hole expansion test are similar to 
those seen during traditional uniaxial tensile deformation.  This observation has provoked research, directed at 
ascertaining a correlation between the HER and tensile properties. In order to account for the forming behaviour 
of complex materials like titanium, a highly robust model that takes into account the material formability in all 
sheet-processing directions must be considered. The R programming language was used in this research to build a 
model fitting expression capable of predicting the HER as well as generating a regression model equation for 
titanium alloys, based on their thickness and Erichsen index number. The proposed regression model equation for 
predicting HER of titanium alloys exhibited an excellent statistical significance (p= 0.00076), indicating the 
robustness of the model fitting expression to predict HER values of titanium alloys. An accompanying adjusted R 
squared value of 0.9987 for the generated regression model equation also shows how well the regression line fits 
the data for accurate prediction of the HER of titanium alloys. A numerical validation analysis of the strength of 
the relationship derived between the predicted and the experimental HERs gave a correlation coefficient of 0.9884. 
This result shows a strong linear relationship between the experimental and predicted HER values of the titanium 
alloys with an average absolute error of 8.8%. 
Keywords: Titanium alloys; R programming; Hole expansion ratio; Erichsen index number; Abrasive water jet; 
Sheet thickness.

 
 
1. Introduction 
 

The manufacture of components for aerospace application sometimes involves the integration of hole flanging 
parts with other segments. During forming operations, the pre-fabricated holes are often exposed to different 
processes including stretching, bending or even wrinkling. Sheet metal edge formability is a material property 
which defines the ability of a sheet metal to oppose edge failure during edge forming processes. The hole expansion 
test (HET) is the standard experimental testing technique used to quantify the edge formability of sheet metals 
according to ISO 16630:2017. The hole expansion ratio (HER) defines the extent of edge formability of a sheet 
material. The higher the HER, the higher the edge formability of materials. For a given sheet metal with an initial 
fabricated hole diameter D0 prior to HET, and a final hole diameter Df at fracture after HET, the HER can be 
expressed as; 

 

𝐻𝐻𝐻𝐻𝐻𝐻 =
𝐷𝐷𝑓𝑓 − 𝐷𝐷0
𝐷𝐷0

× 100%                                                                                                (1) 

 
Different sheet preparation methods are used to prepare sheet metal samples for HET. These machining methods 

are known to introduce defects onto the cut surfaces, which influences the edge formability of materials [1]. Zhang 
et al., [2] in their work observed that, burr up or down conditions in dual phase steel sheets influences the failure 
mode during HET. Some researchers have explored different damage criteria and finite element modelling (FEM) 
techniques to predict HER. Butcher et al., [3] in their work utilised FEM and Gurson-Tvergaard-Needleman (GTN) 
damage criteria to predict the HER of dual phase steel. Park et al., [4] utilised FEM based on different fracture 
criteria and a representative volume element, which accounts for microstructural effects to predict the HER of 
advanced high strength steels. Chung et al., [5] in their work developed a triaxiality dependent fracture criterion 
with hardening behaviour and stiffness deterioration within an anisotropic criterion to predict the HER and edge 
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condition sensitivity of advanced high strength steel sheets. According to their research, these criteria were adopted 
within an FEM package to predict the HER.  

Generally, the stress state observed at the hole edge tip after HET is the uniaxial stress state [6], which is similar 
to the stress state observed during a traditional uniaxial tensile test. This observation has prompted several 
researchers to correlate the HER to material tensile properties. Kumar De et al., [7] in their work on hot-rolled 
high-strength steels suggested that where strengthening mechanism of steels are the same, the ultimate tensile 
strength correlates well with the HER. Chen et al., [8] in their work on ultra-high strength steels observed that 
there is a strong inverse correlation between the HER and tensile strength with values below 640MPa and no 
change in HER for tensile strength above 840MPa. Fang et al., [9] in their study on C-Mn steels showed that higher 
values of the yield to tensile ratio correlates well with the HER. Adamczyk and Michal [10] utilised a multiple 
linear regression model for correlating the HER to the transverse total elongation and average plastic anisotropy 
of high-strength cold-rolled steels. Some works have also recognised the difficulty in correlating material tensile 
properties to the HER. Kim et al., [11] in their work using basic tensile properties to predict the HER of thin steel 
sheets with a machined hole recognised the difficulty in correlating the parameters. Their work proposed 
evaluating the width strains from the measured normal anisotropy as well as considering the tensile elongation 
only along the sheet rolling direction. They also suggested that utilising the width strain in uniaxial tension to 
represent the planar anisotropy would improve the correlation with the HER.  

Generally, initial assessment of the formability of sheet metals is mostly based on the total elongation values 
determined from tensile deformation. However, this approach may be insufficient and unreliable when accounting 
for sheet forming behaviour. Tension tests are done under uniaxial conditions whiles HETs are conducted under 
different loading states depending on the tool geometry [12]. Moreover, the above-mentioned studies were mostly 
conducted on steels, which have relatively less complex textures compared to titanium and its alloy. Singh and 
Schwarzer [13] in their work on texture and anisotropy of titanium and its alloys showed that texture evolution is 
a function of several characteristics such as deformation mode, deformation temperature, original texture and 
microstructure, deformation rate as well as constituent elements. Considering the highly anisotropic nature of 
titanium and its alloys, the feasibility of selecting a preferred material property direction for correlation with the 
HER is complex. An attempt to characterise titanium materials in several sheet directions in a bid to identify a 
preferred orientation could be cost intensive in terms of material, equipment time and operator time. Therefore, 
for a more robust approach, there is the need to consider a material property that caters for the holistic response of 
materials in terms of their ductility and formability in all sheet-processing directions. The Erichsen index number 
(EI) derived from the Erichsen cupping test is utilised in this research. The Erichsen cupping test has become an 
important technique for evaluating the formability of sheet metals. The plastic deformation via biaxial stretching 
of a fully constrained sheet metal also makes the technique suitable for ascertaining the ductile behaviour of sheet 
metals. The usefulness of this technique has drawn interest in its suitability for the assessment of sheet metals for 
stamping and deep drawing operations. The Erichsen index number is a material parameter derived from the punch 
displacement until fracture during the Erichsen cupping test. Some researchers have adopted optical non-contact 
measurement methods to characterise the Erichsen index number. Kocańda and Jasiński [14] in their work have 
shown that laser speckles can be utilised in evaluating the cupping height during localised necking as well as before 
fracture occurs during Erichsen testing. Aydin et al., [15] in their work also utilised a digital image correlation 
method to evaluate the fracture cup height of Ck75 steels during a cupping test.  

The HET and Erichsen cupping test are adequate techniques for the evaluation of sheet metal stretch-
flangeability, formability and ductility mainly because, they prevent draw-in of the sheet during the testing process 
[16]. A regression model expression is proposed in this research to forecast the HER of titanium alloys by taking 
into account the sheet thickness and the EI of the materials. A thickness parameter was introduced into the proposed 
predictive regression model expression due to their reported impact on part formability. Dilmec et al., [17] in their 
work on the influence of sheet thickness and anisotropy on the forming limit curve (FLC) of AA 2024-T4 
aluminium alloys revealed that an increase in the sheet thickness increases the FLC level. Zadpoor et al., [18] in 
their work also investigated the impact of sheet thickness on the formability of AA 2024-T3 and AA7075-T6 
aluminium alloys during tensile testing and air bending. Their work reported that the minimum bending radius 
increases with increasing sheet thickness. For the tensile test, strains at optimum stress and ultimate strain were 
observed to increase with increasing sheet thickness up to 2 mm. Hashemi et al., [19] in their work examined the 
influence of material properties and initial sheet thickness on the formability of pure copper and st14 steel by 
utilising hydro-mechanical deep drawing assisted by radial pressure. Their work found that for reducing sheet 
thickness in both materials, the thickness reduction percentage in critical areas decreases. 

A model fitting expression developed in R programming, capable of predicting the HER as well as generating 
a constitutive regression model equation for titanium alloys, based on their Erichsen index number (EI) and 
material thickness (t), is proposed in this research. 
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2. Experimental procedure 
 
2.1 The materials 

Different titanium alloy sheets with varied thicknesses were used in this work. The materials with their 
corresponding chemical compositions are shown in Table 1. In order to capture the full range of material property 
response in the predictive regression model, a commercially pure titanium alloy (Ti-35A) and one with high 
strength (Ti-64) were included. Ti-35A has the highest purity of the four pure titanium grades and has the lowest 
strength with high room temperature formability and ductility. Ti-64 is the most utilised titanium alloy and 
represents about 60% of the entire titanium production, with the commercially pure alloys accounting for 20% and 
all other alloy forms of titanium constituting the remaining 20% of total titanium production [20].   

 
Table 1. Chemical composition of titanium alloys in Wt.% 

Material Al V Fe O C N H Residual 
Ti-6Al-4V 5.5-6.8 3.5-4.5 0.3 0.2 0.08 0.05 0.015 0.4 

Ti-2Al-1.5V 1.5-2.5 1.0-2.0 0.2 0.18 0.03 0.03 0.015 0.4 
CP-Ti (Grade 2) 0 0 0.3 0.25 0.1 0.03 0.015 0.4 

Ti-3Al-2.5V 2.5-3.5 2.0-3.0 0.25 0.12 0.05 0.02 0.015 0.4 
Ti-35A 0 0 0.2 0.18 0.08 0.03 0015 0.4 

 
2.2 Hole expansion test and Erichsen cupping test  

The hole expansion test was performed on a Zwick/ Roell BUP 1000 machine with the test parameters 
controlled by the Zwick testXpert software. Abrasive water jet (AWJ) machining was used to fabricate circular 
disc test samples with an outer diameter of 200mm and an inner hole diameter of 20mm. A Nakajima punch with 
a diameter of 100mm was used to deform the samples at a speed of 1mm/s until a crack at the hole edge was 
observed. A blankholder force of 150kN was used to ensure that the sheet is prevented from drawing-in during the 
deformation process. A schematic setup of the HET is shown in Figure 1. Three replicates of the AWJ machined 
hole edges were tested for each titanium alloy. The HER was evaluated for each deformed titanium alloy according 
to equation (1). 
 

 
Figure 1. Schematic of the hole expansion test 

 
An Erichsen cupping test with a tool set consistent with ISO 20482:2013, was conducted on the titanium alloys. 

A punch with a 20mm spherical head was used to deform blanks with a dimension of 75mm×75mm, until fracture 
occurred. Grease was used as a lubricant to minimise friction between the punch and the sheet metal sample. The 
extent of formability was assessed by measuring the distance from the initial punch contact to the point of fracture. 
This height represents the Erichsen index number. Three replicates of the Erichsen cupping test was conducted for 
each titanium grade. A random speckle pattern consisting of black dots on a white paint background were utilised 
for mapping the surface strains with a Gom Aramis optical non-contact measurement system. This tracks the full-
field displacement during the deformation process.   

 
2.3 Model description and development 

The R programming language is an open-source execution of the S functional programming language. R is an 
object oriented functional programming language, convenient for high-level scientific programming, data analysis 
as well as modelling. For computationally cumbersome tasks, languages like C, C++, Python and Fortran could 
be linked and called up as required [21, 22, 23].  

For this research, R scripts were coded and implemented in R studio programming language to predict the HER 
of titanium alloys based on their EI and t values. The underlining model fitting expression executed in this work 
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to predict HER of titanium alloys as well as generate regression model equation is given by; 
 

lm (log(HER) ~ Erichsen Index + poly (thickness, 2) , data = experimental data)                      (2) 
 
A logarithmic transform and polynomial functions were employed in the proposed regression model expression 

in order to capture the non-linearity in the data fitting process. Figure 2 shows the flowchart of the sequence logic 
followed to execute the model fitting expression governed by the R codes, for the accurate prediction of HER 
values for titanium alloys. An excel sheet location containing the experimental data with HER, EI and t values 
were loaded into the R-studio software, guided by the R codes. The model fitting expression according to equation 
(2), was then run to calibrate the resulting regression model. Based on the obtained p-value and the adjusted R 
squared (R2

Adj) values, the generated regression model equation could be accepted or rejected. A statistically 
significant model (overall p<0.05) with high correlation (R2

Adj close to 1) translates into a very robust regression 
model equation capable of predicting the HER values. Depending on the statistical strength of the generated 
regression model equation, the HER of an unknown titanium alloy can now be predicted based on known EI and 
t input values. 
 

 
Figure 2. HER prediction flowchart 

 
2.4 Model performance assessment criteria 

A significant test, based on the enumeration of the p-value is used in this work. The p-value helps to ascertain 
if differences seen between the test results and the null hypothesis are because of the null hypothesis failure, or 
due to sampling variation. Generally, low p-values depict that there is a low probability of the null hypothesis to 
produce higher values than those obtained. The levels of significance for different limits of p-values are shown in 
Table 2. Statistical significance level was considered at p˂0.05 in this work. 
 

Table 2. p-value span for levels of significance [22] 
p-value Span Description 

0-0.001 Extremely significant 
0.001-0.01 Highly significant 
0.01-0.05 Statistically significant 
0.05-0.1 Could be significant 

0.1-1 Not significant 
 

For the model to be robust, it should be able to capture variations observed in the response variable by adopting 
some predictor variables. The total variation in the response variable, the y values, about a mean point is defined 
by the total sum of squares, SST [22]; 

 
𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2                                                                                                              (3) 
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Equation (3) can be expressed algebraically as; 
 

�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 + �(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2                                                                 (4) 
 
where, ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 is the residual sum of squares (RSS) and ∑(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2 is the regression sum of squares (SSReg), 
defined as the total variation in the fitted model about the mean. 

The SST, RSS and SSReg thus enables for a proper definition of an appropriate regression line that fits the data. 
In order to ascertain how well the regression line fits the given data, the coefficient of determination R2 was adopted; 

 

𝐻𝐻2 = 1 −
𝐻𝐻𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 −
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
                                                                                (5) 

 
Putting SST in equation (3) back into equation (5) 
 

𝐻𝐻2 =
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 − ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2                                                                                     (6) 

 
But, from equation (4);  ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 = ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 + ∑(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2                        
Substituting equation (4) into equation (6); 
 

𝐻𝐻2 =
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 + ∑(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2 − ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2  

𝐻𝐻2 =
∑(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2                                                                                                            (7) 

 
Equation (7) can be simplified as; 
 

 𝐻𝐻2 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

                                                                                                                     (8)  
 
Thus, for values ranging between 0-1, the regression line captures most of the variations in the data when R2 is 

close to one.  
Generally, R2 represents the sample approximate of the proportion of variance, which are captured in the 

outcome variables, and are favoured upwards with respect to the explained population proportion of variance. In 
order to attenuate the limitations of R2 and discourage the use of more predictor variables to get higher R2 values, 
the adjusted R2, (R2

Adj), are adopted to guard against spurious relationships.  Thus, the R2
Adj only increases when 

factors are highly correlated, for situations where more independent variables are added to the model. The sum of 
squares is divided by the degrees of freedom to account for the R2

Adj. Generally, when considering simple 
regression models, n-2 are utilised for RSS and n-1 for SST [22].  

For a given number of predictor variable k and sample size n, the R2
Adj can be expressed as [24]; 

 
                                                  𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴2 = 1 − �(1 − 𝐻𝐻2) � 𝑛𝑛−1

𝑛𝑛−𝑘𝑘−1
��                                                                           (9) 

 
Putting equation (5) into equation (9), R2

Adj can also be written as; 
 

𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴2 = 1 − �
𝐻𝐻𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

× �
𝑛𝑛 − 1

𝑛𝑛 − 𝑘𝑘 − 1
��                                                                    (10) 

 
The adjusted R2 was used in this work to assess how well the regression line fits the data for accurate prediction 

of the HER of titanium alloys. 
 
3. Results and discussions 
 
3.1 Formability of titanium alloys 

Table 3 shows the HER and the EI values of the studied titanium grades after the experimental trials. The varied 
formability performance of the titanium grades suggests that apart from the influence of machining induced edge 
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surface defects on the HER, the material microstructures played an important role in the edge formability of the 
titanium alloys. The EI values are representative of the material ductility in all sheet-processing directions and 
reveals the extent of the material formability dependence on microstructure at room temperature. The unalloyed 
titanium sheets (Ti-35A and CP-Ti) showed high edge formability compared to their alloyed counterparts due to 
their superior room temperature ductility and lower strength. Ti-64 showed the lowest formability compared to the 
other titanium grades due to its high strength at room temperature. Similar limited room temperature formability 
as a result of low material hardening was recorded in Ti-64 during stretch forming [25].  

 
Table 3. Formability at room temperature 

Material t, mm EI, mm HER, % 
Ti-3Al-2.5V 1.60 5.889 30.096 
Ti-3Al-2.5V 1.25 6.218 28.357 
Ti-2Al-1.5V 1.27 8.980 52.529 
Ti-6Al-4V 1.60 4.014 18.344 

CP-Ti (Grade 2) 1.60 10.289 81.870 
Ti-35A 1.00 11.313 157.317 

 
A graphical comparison of the performance trends observed in the material formability behaviour after HET 

and Erichsen cupping test is shown in Figure 3. The materials exhibited similar trends of formability response for 
both experimental techniques, thus showing the possibility of correlating test results from both techniques. 

 

 
Figure 3. HER and EI assessment of titanium alloys 

 
3.2 Forming strains during Erichsen cupping test 

Figure 4 shows the forming strain evolution at the onset of localised necking prior to fracture during the testing 
process. Overall, high strain concentration sites were observed at the summit of the dome region indicating 
minimal friction between the spherical punch head and the test samples. Failure in Ti-64 was sudden with limited 
strain localisation (15.9%) and no distinct necking prior to failure, Figure 4c. Similar trends were recorded in Ti-
64 after stretch forming with a plane strain forming limit minimum under 10% [25]. In the present experiments 
Ti-35A and CP-Ti pure grades showed the highest resistance to fracture (76.26% and 64.46% respectively, Figure 
4a, b), mainly due to their superior room temperature formability. Localised necking prior to fracture was observed 
in CP-Ti and Ti-35A, resulting in delayed fracture. The response of CP-Ti and Ti-64 to stretch forming are 
consistent with those observed in other works [26]. 

 
3.3 Thinning evolution during Erichsen cupping test 

Figure 5 shows the material thinning evolution along the chosen section lengths of interest, at localised necking 
prior to fracture. Generally, optimum sheet thinning was observed around the dome summit prior to fracture during 
the biaxial stretching process. Reduced cupping height observed in Ti-64 reflected in their poor thinning tendencies 
(21.6%) prior to failure, Figure 5c. The limited thinning noted in Ti 64 is evident of the abrupt fracture of the part 
observed during the forming process. Ti-35A and CP-Ti pure grades exhibited the highest cupping height with an 
accompanying high formability, which reflected in their high resistance to thinning (64% and 60.3% respectively) 
prior to fracture, Figure 5a, b. Overall, the thinning tendencies exhibited by the titanium alloys are consistent with 
the forming performance observed after HET. The higher the thinning capability, the higher the formability of the 
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material. In conventional sheet metal forming processes like incremental sheet forming, the maximum allowable 
thinning is an indicator of sheet metal formability [27].  

 

 

 
Figure 4. Major strain evolution during Erichsen cupping test 
(a)CP-Ti (Grade 2), (b)Ti-35A, (c)Ti-64, (d)Ti-215, (e)Ti-325 

 
 

 

 
Figure 5. Thinning evolution during Erichsen test 

(a)CP-Ti (Grade 2), (b)Ti-35A, (c)Ti-64, (d)Ti-215, (e)Ti-325 
 

131

J. S. Kwame et al. Journal of Modeling and Optimization 2020;12(2):125-137



 

 
 

3.4 Model predictability assessment and regression model equation 
Figure 6 shows the results of the generated regression equation coefficients and their respective statistical 

parameters, based on the experimental results run by the model fitting expression stated in equation (2) using R 
programming. 
 

 

 
Figure 6. Generated regression model equation coefficients  

 
Inspection of the p-values generated for the regression model equation coefficients revealed that all the 

coefficients have p<0.05. This shows that all the regression model equation coefficients respond well to the HER 
values. The overall regression model equation p-value (0.00076) also shows extreme statistical significance (see 
table 2), indicating the robustness of the model to predict the HER values of titanium alloys. R2

Adj value of 0.9987 
for the generated regression model equation also shows how well the regression line fits the data for accurate 
prediction of the HER values of titanium alloys. Therefore, for edges prepared with AWJ machining and deformed 
with a Nakajima punch, the proposed regression model equation for predicting HER of titanium alloys, based on 
the EI and t values is given by; 

 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑒𝑒2.015+0.234𝐸𝐸𝐸𝐸−0.223𝑡𝑡+0.377𝑡𝑡2                                                                               (11)  

 
Equation (11) generally takes the form of; 
 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝐸𝐸𝐸𝐸+𝛽𝛽2𝑡𝑡+𝛽𝛽3𝑡𝑡2                                                                                                (12) 
 
Where 𝛽𝛽𝑛𝑛 is regression coefficient, n is an integer. 
In order to validate the predictability of the model fitting expression, a cross-validation process was employed 

where the model was re-run with a deliberate omission of one experimental data point for all test values. For each 
validation round, the omitted experimental HER is compared to the predicted HER for each tested EI and t value, 
generated from the remaining five-data model fitting by the expression in equation (2). A cross-validation process 
adopted for the onward prediction of the HER of Ti-6Al-4V using the R-script coded and executed in this research 
are shown in section 3.5. Similar R script executions were conducted for each titanium alloy examined in this 
research. 

Table 4 shows the p-values obtained for the regression model equation coefficients of each titanium alloy used 
for predicting their HER values and those generated for the overall regression model equation as well as their 
corresponding R2

Adj values.  
Generally, the obtained p-values suggests that the generated regression model equation coefficients respond 

well to the HER for all the titanium alloys examined. The overall p-values of the regression model equations 
generated also showed high statistical significance with their corresponding R2

Adj values indicating a strong data 
fitting to the regression line, signifying the high statistical accuracy of the model. However, it is worth nothing 
that the robustness of the generated regression model equation coefficients are significantly improved, when all 
six data sets are fitted by the regression model expression. This shows that the model could be improved with 
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further data sets, even though the statistical indicators are strong enough to predict HER values for titanium alloys 
in this work. 
 

Table 4. p-value and R2
Adj of generated regression model equation coefficients 

Material 𝜷𝜷𝟎𝟎 𝜷𝜷𝟏𝟏 𝜷𝜷𝟐𝟐 𝜷𝜷𝟑𝟑 Overall p R2Adj 
Ti-325 (1.6) 0.00781  0.0078 0.04324 0.02699 0.01066  0.9997  

Ti-325 0.022  0.0226 0.1208 0.0781 0.02908  0.9979  
Ti-215 0.0205  0.0226 0.1106 0.0975 0.0277  0.9981  
Ti-64 0.00381  0.00399 0.0164 0.01027 0.00474  0.9999  
CP-Ti 0.0354  0.0397 0.2492 0.0692 0.02877  0.988  
Ti-35A 0.0204  0.0226 0.1781 0.593 0.04186  0.9957  
All six  0.000504 0.00057 0.022779 0.006227 0.0007631 0.9987  

 
3.5 Cross-validation process for predicting HER of Ti-6Al-4V 

Figure 7 shows the predicted HER of Ti-6Al-4V based on known EI (4.0144mm) and t (1.6mm) values. The 
generated regression model equation based on cross validation for the onward prediction of the HER value is given 
by equation (13) with an overall p-value of 0.0047 and R2

Adj=0.99.  
 
                                       𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑒𝑒2.085+0.228𝐸𝐸𝐸𝐸−0.234𝑡𝑡+0.393𝑡𝑡2                                                                        (13) 

 

 

 
Figure 7. R-script computation on the user interface for Ti-6Al-4V.(a) Executed R-codes, (b) display on console 
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3.6 Comparison of the experimental and predicted HER 
Table 5 shows the experimental and the predicted HERs based on the proposed model fitting expression in 

equation (2). The results show very high proximity of the predicted HER values to the experimental HER values. 
This strength in proximity are consistent with the strong statistical indicators observed for the generated regression 
model equations, obtained for each validation trial. However, the predicted HER of Ti35A deviated significantly 
from the experimental HER, which was registered as high p-values in the β2 and β3 coefficients (table 4). The high 
p-values recorded represents a high drift in capturing variation in the data and a low correlation between factors. 
This could be attributed to the fact that Ti-35A was set as the optimum threshold for material performance in this 
work due to its superior ductility. Therefore utilising CP-Ti (Grade 2) as the predictor- model –calibration- 
threshold value to capture Ti-35A was insufficient, because it has a lower HER value (81.9%) compared to Ti-
35A (157.3%). Thus, the omission of Ti-35A during the cross-validation trial produces a performance variability 
in their prediction response with the data set available, hence the deviation.  

 
Table 5. Comparison of experimental and predicted HER 

Material t, mm Experimental HER, % Predicted HER, % 
Ti-3Al-2.5V 1.60 30.096 28.726 
Ti-3Al-2.5V 1.25 28.357 27.887 
Ti-2Al-1.5V 1.27 52.529 53.4304 
Ti-6Al-4V 1.60 18.344 19.574 

CP-Ti (Grade 2) 1.60 81.870 84.647 
Ti-35A 1.00 157.317 231.597 

 
A plot of the predicted and the experimental HERs of the examined titanium alloys is shown in Figure 8. The 

plot shows a strong linear relationship between the predicted and the experimental HERs. These results confirm 
the high robustness of the model fitting expression and the high predictability of the regression model equations 
generated. 

 

 
Figure 8. Plot of the experimental and predicted HER 

 
Standard statistical constraint optimization parameter equations [28], are adopted to examine the results 

obtained in this work. The average absolute error (𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎) obtained between the experimental HER (HERexp) and the 
predicted HER (HERpre) is given by; 

 

𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑁𝑁
�

𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑒𝑒𝑒𝑒𝑖𝑖 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑒𝑒𝑝𝑝𝑆𝑆𝑖𝑖

𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑒𝑒𝑒𝑒𝑖𝑖                                                                                       (14)
𝑁𝑁

𝑖𝑖=1

 

 
where N is the number of data points considered. 

Putting values from Table 5 into equation (14), the average absolute error obtained between the predicted and 
experimental HER in the studied titanium alloys, based on the proposed generated regression model equations is 
8.8%.  
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In order to ascertain numerically, the strength of the linear relationship between the experimental and predicted 
HERs obtained from the generated regression model equations, the correlation coefficient R is evaluated according 
to the equation;  

 

𝐻𝐻 =
∑ �𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑒𝑒𝑒𝑒𝑖𝑖 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑒𝑒𝑒𝑒�����������𝑁𝑁
𝑖𝑖=1 �𝐻𝐻𝐻𝐻𝐻𝐻𝑒𝑒𝑝𝑝𝑆𝑆𝑖𝑖 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑒𝑒𝑝𝑝𝑆𝑆�����������

�∑ �𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑒𝑒𝑒𝑒𝑖𝑖 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑒𝑒𝑒𝑒�����������𝑁𝑁
𝑖𝑖=1

2 ∑ �𝐻𝐻𝐻𝐻𝐻𝐻𝑒𝑒𝑝𝑝𝑆𝑆𝑖𝑖 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑒𝑒𝑝𝑝𝑆𝑆�����������2𝑁𝑁
𝑖𝑖=1

                               (15) 

 
where 𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆𝑒𝑒𝑒𝑒���������� is the average experimental HER and 𝐻𝐻𝐻𝐻𝐻𝐻𝑒𝑒𝑝𝑝𝑆𝑆���������� is the average predicted HER 

Putting values from Table 5 into equation (15), the correlation coefficient for the titanium alloys, based on the 
proposed generated regression model equations is given by; 

 

𝐻𝐻 =
20800.95198
√442910563.4

= 0.9884 

 
The correlation coefficient of 0.9884 shows a strong linear relationship between the experimental and predicted 

HER values obtained for the titanium alloys. This result confirms the high robustness of the proposed regression 
model fitting expression for predicting the HER values in titanium and its alloys. 
 
4. Conclusions 

 
The stress state observed at the hole edge of sheet metals after HET are synonymous to those observed during 

conventional uniaxial tensile testing. However, conventional tensile test methods are not adequate in evaluating 
the edge forming performance of sheet metals. This similarity in stress state has led some researchers to correlate 
the tensile properties of sheet metals to their HERs. However, for highly anisotropic materials like titanium and 
its alloys, predicting the HER based solely on the tensile mechanical properties may not be representative of the 
material response. This work proposed a model fitting expression, which can be called in R programming language 
to predict the HER as well as generating regression model equations of titanium alloys based on known EI and t 
values. The work found that;  

1) The Erichsen cupping test based on biaxial stretching provides a route to assess the plastic formability of 
materials in all sheet-processing directions. This approach offers a better means of assessing the material forming 
performance as opposed to the limited routes offered by uniaxial tensile properties. The EI and HER offered similar 
trends of material formability thereby making a good case for correlating both parameters 

2) Apart from the major role machining induced defects play in sheet edge formability, the material 
microstructure response also makes a significant impact on edge formability performance of titanium alloys 

3) The HER of titanium alloys can be predicted based on known EI and t values, when run in R programming 
with the model fitting expression:  

lm (log(HER) ~ Erichsen Index + poly (thickness, 2) , data = experimental data)                                                   
4) For hole edges prepared with AWJ and tested with a Nakajima punch, the HER of titanium alloys can be 

predicted, using the regression model equation:  
 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑒𝑒2.015+0.234𝐸𝐸𝐸𝐸−0.223𝑡𝑡+0.377𝑡𝑡2 
 
5) The proposed regression model equation has an overall p-value of 0.00076 indicating an extreme statistical 

significance and signifying the robustness of the model fitting expression to predict HER values of titanium alloys. 
R2

Adj value of 0.9987 for the generated regression model equation also shows how well the regression line fits the 
data for accurate prediction of the HER of titanium alloys 

6) A correlation coefficient of 0.9884 was obtained between the experimental and predicted HER values 
showing a strong linear relationship and a high degree of fit with an average absolute error of 8.8% 
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