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Abstract: Due to economic, environmental, and social interest of coastal areas, together with their erosion 
problems, different coastal management strategies can be considered, with different physical (shoreline evolution) 
and economic (net present value, ratio benefit-cost, break-even point) consequences and impacts. Therefore, this 
work presents an integrated methodology that aims to compare and discuss the most promising coastal intervention 
scenarios to mitigate erosion problems and climate change effects, considering costs and benefits related to each 
intervention. The proposed methodology takes a step forward in assessing the coastal erosion mitigation strategies, 
incorporating three well-defined and sequential stages: shoreline evolution in a medium-term perspective; 
structures pre-design; and a cost-benefit assessment. To show the relevance of the methodology, a hypothetic case 
study and several intervention scenarios were assessed. In order to mitigate costal erosion two different situations 
were analyzed: the reference scenario and the intervention scenarios. 34 intervention scenarios were proposed and 
evaluated to mitigate the erosion verified. Depending on the parameter considered (reduce erosion areas, protect 
the full extension of urban waterfronts, improve the economic performance of the intervention by increasing the 
net present value, the benefit-cost ratio or decreasing the break-even time), best results are obtained for different 
scenarios. The definition of the best option for coastal erosion mitigation is complex and depends on the main goal 
defined for the intervention. In conclusion, costs and benefits analysis are demanded and it is considered that the 
proposed methodology allows choosing better physical and economic options for future coastal interventions, 
helping decision-making processes related to coastal management. 
Keywords: LTC; XD-Coast; Costs and benefits; Coastal optimization; Coastal management; Climate change 
effects. 

 
 
1. Introduction 
 

Worldwide, coastal zones experience increased rates of erosion, mainly due to fluvial sediment supply 
reduction, as well as coastal areas degradation and transformation due to anthropogenic actions [1-5]. Climate 
change effects also increase coastal erosion problems [6-8]. As a coastal erosion consequence, a growing trend of 
conflicts between shoreline evolution, land use and erosion mitigation measures is observed [9]. Despite coastal 
erosion impacts being confined to coastal areas, these areas host over 40% of the world population, as well as a 
wide variety of coastal ecosystems that provide various different services [10-12]. Due to the economic, 
environmental and social importance of coastal areas, coupled with their erosion problems, different coastal 
management strategies to mitigate erosion can be considered. 

As described in [13-15], the IPCC (Intergovernmental Panel on Climate Change) identified three main strategies 
to respond to coastal erosion, flooding and sea level rise risks: i) retreat, limiting the effects of a potential dangerous 
event, landward resettling of the risky population centres and economic activities; ii) accommodation, considering 
all the strategies necessary to increase the society's resilience to coastal erosion, including land use change, 
emergency planning and hazard insurance [16-18]; iii) protection, involving all defence techniques used to 
preserve vulnerable areas, such as population centres, economic activities and natural resources; and iv) attack, by 
land reclamation and extending facilities towards the sea [19]. Strategies to mitigate coastal erosion are mainly 
reactive and tend to not include local stakeholders in the decision-making process [20]. Although some erosion 
impacts can be mitigated through coastal protection works, such measures may represent negative second order 
impacts for coastal environments and social and economic life [21]. 

Current coastal erosion and flooding adaptation strategies [22-24] are frequently based on the adoption of 
adaptation measures at the local scale, while the factual costs, impacts and benefits are determined by the suit of 
adopted adaptation measures at the landscape scale [25-29]. Adaptation measures should also reduce climate 
change vulnerability and risk [30-33], and would help to seek opportunities, to build up capacity of social 
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environmental systems to cope with climate impacts, and mobilize that capacity by implementing decisions and 
actions [34]. To deal with complexity and uncertainty, action-plans requires well-developed methodologies and 
tools, including participatory approaches, to provide efficient and effective means of supporting decision-making 
[35-38].  

Traditionally, coastal erosion was assessed using engineering approaches, such that the physical effectiveness 
of adaptation measures was assessed without taking into consideration associated cost and benefit [12, 39]. Over 
the last decades the focus of studies moved from physical effectiveness to a more comprehensive management of 
coastal zones, evaluating adaptation measures with economic tools such as cost-effectiveness, cost-benefit and 
efficiency analyses [40]. Moreover, when discussing climate related threats with decision-makers, cost-benefit 
analyses that support decisions are often demanded [41]. According to , cost-effectiveness studies provide insight 
in what adaptation measures achieve coastal protection objectives at least cost [42, 43]. Cost-benefit studies 
provide insight in what adaptation measures/strategies provide largest net benefits, assessing costs and benefits of 
engineering measures [10, 11, 41, 44-47, 49, 50]. In short, coastal zone managers should, amongst others, rely on 
cost-benefit analyses when defining protection, adaptation and/or retreat strategies [51]. 

Therefore, this work aims to present a methodology to analyse and discuss the most adequate adaptation 
strategies to coastal erosion in combination with socio-environmental-economic expertise, considering the costs 
and benefits related to each intervention, by applying an integrated, well-defined, and sequential cost-benefit 
approach. The goal of the proposed methodology is to support decision-making for planning and coastal 
management, by encompassing the assessment of the shoreline evolution impacts (with a shoreline evolution 
model, LTC [52]) , and the design of coastal structures (applying a coastal structures design model, XD-Coast 
[53], allowing the final costs and benefits analysis. To show the relevance of the methodology, some different 
interventions scenarios have been proposed to protect a hypothetical urban waterfront from a coastal erosion trend, 
illustrating an example of potential applications. The adopted scenarios encompass four different types of coastal 
interventions: groins, longitudinal revetments, artificial nourishments, and sand by-pass systems. Consequently, 
in the next section, the costs and benefits assessment method are described, subdivided in each of the three 
integrated stages. Next, a description of the hypothetical case study is presented, including the reference scenario, 
and all the proposed intervention scenarios. 

 
2. Methodology 
 

The proposed methodology encompass three stages (Figure 1) to evaluate physical and economic performance 
of different types of coastal interventions (groins, longitudinal revetments, artificial nourishments and sand by-pass 
systems): 1) shoreline evolution projection in a medium-term horizon (using LTC numerical model [52]), that 
leads to estimate the benefits of the intervention; 2) pre-design of the coastal structure and the material volume 
required (with the support of XD-Coast model [53]), that allows the costs estimate (construction and maintenance); 
and finally, 3) taking into account the previous results, a cost-benefit assessment to each intervention scenario. 
 

 
Figure 1. Proposed methodology to assess the physical and economic performance of different coastal 
interventions scenarios. 
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The proposed methodology is considered integrated as the structures pre-design is based on the wave 
characteristics and topography/bathymetry adopted in the shoreline evolution assessment. Thus, the definition of 
the dimensions of the intervention and consequent materials volumes are dependent of the domain characteristics 
assessed during the shoreline evolution numerical modelling. Then, the third step of the method (cost-benefit 
assessment) is associated to the shoreline evolution assessment and by adopting land use values that represent the 
ecosystems services that can be obtained for different uses. Thus, areas gained, maintained or lost in every year of 
the simulation are transferred to a monetary value, considering the correspondent land use values. At the same 
time, in the cost-benefits analysis it is assigned an economic value to the materials of the designed interventions 
(this value should consider design costs, workforce, transport and all the potential related costs of the intervention) 
and thus, the tested interventions also result in a monetary value. Considering the previous, in the described 
methodology every sequential procedure steps are well-defined. 

  
2.1 Shoreline evolution assessment 

The benefits of a coastal intervention scenario are estimated through the numerical modelling evaluation of the 
territory maintained, gained, or lost, over time. Therefore, the shoreline evolution numerical model LTC (Long-
Term Configuration [52]) was considered. LTC was developed to support coastal zone planning and management 
in relation to coastal erosion problems [56-58]. It was firstly presented by  and has been improved and largely 
applied since then [11, 52, 56, 58, 60-62, 64-66]. LTC combines a simple classical one-line model with a rule-based 
model for erosion/accretion volumes distribution along the beach profile [54]. This model was designed for sandy 
beaches, where the main cause of shoreline evolution is the alongshore sediment transport gradients, dependent 
on the wave climate, water levels, sediment's sources and sinks, sediment's characteristics and boundary 
conditions. The model inputs are the wave climate (being defined by the wave height, wave period and direction), 
water level and the bathymetry and topography of the landward adjacent zones (updated during calculation). 

The longshore sediment transport volumes are estimated by a formula that considers the waves breaking 
direction and height (CERC formula [67]). The sediment volumes balance is defined through the continuity 
equation, depending on sediment transport gradients between modelled cells, similar to one-line models approach. 
It is assumed that there is an offshore depth of closure and an onshore upper end of the active profile, defining the 
limits where no significant changes happen (active width of each cross-shore profile). LTC assumes a uniform 
cross-shore distribution of the alongshore sediment transport along the active width of the beach's cross-shore 
profiles, thus performing a uniform variation of the vertical coordinates of the active profile grid points, adjusting 
the active profile at the boundaries, based on the sediments' friction angle [55]. This way, the variation of the 
shoreline position depends not only of the sediments volume variation but also of the topography and bathymetry 
associated with each cross-shore profile. The 3D topo-bathymetric model is continuously updated during 
simulation, allowing distributing erosion or accretion sediment volumes between each computational time step 
(Figure 2). 

Figure 2. LTC definition scheme (adapted from [68, 69]). 
 
The wave transformation by refraction, diffraction and shoaling are modelled in a simplified manner [54], 

always taking into account  the updated bathymetric data of each time step. According to Coelho [52], the 
refraction effects in LTC are estimated considering the Snell's law, while the shoaling effect is computed assuming 
that Airy's linear theory of sinewaves is valid. The diffraction effects are only calculated for beach extensions 
located downdrift the groins, considering a simplified method. 

Due to the importance of the boundary conditions in the model simulations, several options can be made: 
constant sediment transport volumes going in or out of the modelled domain; constant volume variations in the 
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boundary sections; extrapolation from nearby conditions [63]. Moreover, combined coastal protection works may 
be considered, with almost no limitation of the number of structures or artificial nourishments interventions. These 
coastal intervention characteristics are adopted in the structures pre-design module, allowing the definition of the 
dimensions of each intervention. In the cost-benefit module, an annual land use value is assigned to the territory, 
which, in correspondence with every year area gained, maintained or lost along the shoreline evolution simulation 
time horizon will allow evaluate the economic benefits. 

 
2.2 Structures pre-design 

Coastal intervention costs estimate (construction and maintenance) is based on structures dimensions and 
required material. Thus, it is necessary to define the type of blocks and geometry of the structure (cross-section 
and length) and, consequently, the structure volume (knowing local wave climate and bathymetry and topography 
from the shoreline evolution assessment). The numerical pre-design tool XD-Coast was applied [71]. XD-Coast 
software (Xpress Design of COAstal Structures) was developed in Microsoft Visual C# language, allowing the 
calculation of armour layer blocks unit weight, considering different formulations and types of structures. 
Furthermore, the main characteristics of the cross-section are also defined, in function of the armour layer blocks 
unit weight [53]. Thus, the XD-Coast is divided into two main parts: estimative of the armour layer blocks unit 
weight; and cross-shore geometric characteristics definition. 

Firstly, the user chooses the type of structure and the formulation required to calculate the block weight of its 
resistant layer. Afterwards, in the second part, depending on the first part results, a schematization of the cross-
section can be obtained [71]. The coastal structures are exposed to several energetic loads, as waves, currents and 
tides, but the software only considers the load represented by the wave height. Once the cross-section is defined, 
knowing the bathymetry and topography at the structures location, the total dimension and the volume of each 
structure layer and type of material is calculated. In the cost-benefit module, monetary values are assigned to the 
materials volumes and structures maintenance requirements [60]. 

 
2.3 Cost-benefit analysis 

To assess and compare the economic viability of different coastal intervention scenarios, a cost-benefit analysis 
is performed, considering the net present value (NPV) and the benefit-cost ratio (BCR) evaluation criteria [77]. 
Costs and benefits are compared to the no intervention scenario, where costs (Ct) are defined as the additional 
initial investment and recurrent maintenance costs (in €/year) and benefits (Bt) are defined as territory maintained, 
gained or lost, due to the intervention (in €/m²/year). Initial investment and recurrent maintenance costs are based 
on XD-Coast structures design, and erosion/accretion areas are based on LTC shoreline evolution results. 

The NPV evaluation criterion is given by the sum of discounted benefits minus the sum of discounted costs that 
occur in each period t, over the lifetime of the project T [77], and is given by: 

 
  NPV = ∑ 𝐵𝐵𝑡𝑡

(1+𝑟𝑟)𝑡𝑡
𝑇𝑇
𝑡𝑡=0 − ∑ 𝐶𝐶𝑡𝑡

(1+𝑟𝑟)𝑡𝑡
𝑇𝑇
𝑡𝑡=0                                 (1) 

 
where r is the time discount rate. The investment is considered economically viable when the NPV > 0, i.e., when 
the present value benefits (first term on right-hand side of Equation 1) exceed the present value costs (second term 
on right-hand side). 

The BCR evaluation criterion is given by the sum of discounted benefits relative to the sum of discounted costs 
that occur in each period t, over the lifetime of the project T (Zerbe and Dively, 1994), and is given by: 

 
BCR = ∑ 𝐵𝐵𝑡𝑡

(1+𝑟𝑟)𝑡𝑡
𝑇𝑇
𝑡𝑡=0 ∑ 𝐶𝐶𝑡𝑡

(1+𝑟𝑟)𝑡𝑡
𝑇𝑇
𝑡𝑡=0�                            (2) 

 
The investment is considered economically viable when the BCR > 1, i.e., when the present value benefits 

(numerator on right-hand side of Equation 2) exceed the present value costs (denominator on right-hand side). 
Note that the BCR = 1 when the NPV = 0. 

The benefits (positive if the territory is maintained or gained, and negative if the territory is lost) are obtained 
taking into account the land value (considering all the environmental, social and cultural aspects in the adopted 
value). [78,79] present provided services of different ecosystems that can work as preliminary reference for land 
use values, but in specific studies, users should support and validate the values with adequate socioeconomic 
databases. Maintained, gained or lost territory over time results of comparing the shoreline evolution of two 
different scenarios: the intervention scenario and the reference scenario. In Figure 3, the methodology for benefits 
calculation considered in this work is schematized. The positive benefits (green hatch) encompass the accretion 
area due to the coastal intervention (a groin, in the presented example) and the area not eroded due to the groin 
presence. The negative benefits correspond to the increased erosion in the coastal intervention scenario that would 
not occur in the reference scenario (red hatch). 
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Figure 3. Schematization of positive and negative benefits, and resultant physical impact. 

 
Considering Figure 3, the physical impact is understood as the difference between the erosion areas of the 

reference and the intervention scenarios, added to the accretion area of the intervention scenario, at the time instant 
under analysis. The economic performance of each coastal intervention scenario is evaluated by the net present 
value (NPV), the ratio between benefits and costs (BCR) and the break-even point, which represents the instant, 
during the simulation period, when the total benefits equal the total costs of the intervention (BCR = 1 and NPV 
= 0). 

  
3. The case study 
 

The reference scenario adopted in this study represents the natural shoreline evolution, without coastal 
interventions. Then, to exemplify the use of the methodology, 34 scenarios are presented, based on 4 different 
types of intervention. To allow the comparison between the different scenarios, a baseline scenario for each 
intervention type was defined. Starting from each baseline scenario, some intervention characteristics were 
changed (length, location, number of structures, volume, etc.), and thus, 30 other different scenarios were defined 
and analysed (10 scenarios with groins, 7 scenarios with longitudinal revetments, 9 scenarios for artificial 
nourishments and 4 scenarios for sand by-pass systems). This section describes the reference scenario, each of the 
baseline scenarios and finally, describes the interventions characteristics changed and evaluated in each of the 
other scenarios. 
 
3.1 Reference scenario  

The reference scenario is a hypothetical scenario defined by a regular topo-bathymetry, represented by a square 
grid (20 m spaced), with 401 x 501 points (respectively, in the cross-shore and longshore directions), which results 
in a spatial domain area of 8 000 x 10 000 m². The bathymetry was generated according to the Dean profile [80], 
considering the parameter 𝐴𝐴 and 𝑚𝑚 equal to 0.127 and 2/3, respectively. For the topography (above reference water 
level, 0.0 m) a constant slope of 2% was considered.  

The wave climate was considered constant in all the numerical simulations, with offshore wave height (𝐻𝐻0) of 
2 m, wave period of 9.34 seconds (T) and 10 degrees West for wave direction, clockwise (𝛼𝛼0). The active cross-
shore profile was limited by the depth of closure (𝐷𝐷𝐷𝐷𝐷𝐷 = 8 m) and by the wave run-up (𝑅𝑅𝑢𝑢 = 2 m), resulting in a 
total active profile height of 10 m (considered constant along the time horizon of the simulations). At the northern 
boundary of the domain, a null input of sediments was considered and in the southern boundary, an extrapolation 
of the longshore sediment transport nearby conditions was adopted. A time-step of one hour and a time horizon of 
20 years were admitted in all scenarios. Annual shoreline position outputs were recorded allowing the evaluation 
of every year eroded and accreted areas. 

To estimate territory value, the provided services of the urban areas and ecosystems that are important to human 
well-being, health, livelihoods and survival should be considered. In this work, three different zones were defined 
along the coast, with landward constant value (Table 1). From North to South, beaches, an urban area and forests 
were considered, where the highest value was attributed to the urban area, in a longshore extension of 1.5 km. The 
beach allows coastal protection and recreational uses, the urban area may support several different activities and 
uses (restaurants, hotels, economic services, etc.) and finally, the forest provide climate regulation, timber, habitat 
for biodiversity, erosion control and many others [15, 78,79]. It should be noticed that the defined land values 
encompass at the same time economic, social, cultural and environmental aspects, and require sensitivity analysis 
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previously its application to adequate characterize the provided services of the territory. Despite the generic case 
study, the adopted values for this reference scenario are inspired and in accordance with typical values in use for 
Portuguese Northwest coast. However, as previously referred, in specific studies, users should support and validate 
the values with adequate socioeconomic databases, considering all the relevant aspects in the study site. For the 
reference scenario, the time discount rate (r) of 3% was considered (based on 15). 

 
Table 1. Economic land value defined in the case study (based on 15). 

 Description (km) Location Extension 
(km) 

Value 
(€/m²/year) 

Zone 3 Beaches North limit 1.0 2.00 
Zone 2 Urban area Intermediate 1.5 10.00 
Zone 1 Forests South limit 7.5 0.20 

 
Considering the physical performance of the reference scenario, the recorded shoreline evolution represents 

important erosion problems after 20 years, meaning that if no interventions are implemented, the shoreline retreat 
can attain approximately 230 m in the northern boundary of the domain and all the urban waterfront extension is 
affected by erosion. Figure 4 shows the shoreline evolution after 5, 10 and 20 years, and the total lost area in each 
different zone. 

 
Figure 4. Shoreline evolution in the reference scenario, over time (cross-shore scale 10 times the longshore scale). 

 
The economic performance is based on the unit values considered for each coastal zone (€/m²/year), Table 1. 

The NPV was estimated at the end of each year of simulation (the BCR value is not calculated, since for the 
reference scenario there are no interventions and associated costs). In the 5 years simulation, erosion and land 
losses represent about 0.8 million euros and after ten years, the costs exceed 3 million euros (values updated to 
year 0). At the end of the simulation, the land losses represent about 12 million euros.  

Although hypothetical, the reference scenario shows that in coastal areas susceptible to erosion (where the 
sediments volume available for the littoral drift are below the potential sediment transport capacity and shoreline 
retreat rates are expect), important economic losses will occur due to the direct reduction of the area where the 
ecosystems services are provided. In fact, if no mitigation strategies are adopted, urban water fronts, beaches and 
forest will be lost, decreasing the benefits in the land use. Thus, different intervention scenarios are proposed to 
mitigate the erosion problems presented in the reference scenario. 

 
3.2 Groin baseline scenario 

The groin baseline scenario was characterized by a 200 m groin length, located 2.5 km far from the northern 
border of the modelled domain (at the southern limit of the urbanized and most valuable area of the territory), as 
shown in Figure 5. 

Considering the simulation characteristics defined on the reference scenario, the LTC was applied to the 
baseline scenario to predict the shoreline evolution along the 20 years’ time horizon. Smaller shoreline retreat rates 
near the northern border, deposition near the urban zone and updrift of the groin, are obtained due to the groin 
presence (Figure 6). However, the erosion trends and shoreline retreat rates are higher at downdrift. Thus, in order 
to evaluate the scenario effectiveness, the costs involved in the structure construction and maintenance were 
evaluated, by defining the groin characteristics (through XD-Coast model). 

The cross-section characteristics (resistant layer and filters, crest width and elevation, and slope) were 
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considered constants along the groin length, only changing the height, depending on the bathymetry and 
topography. A crest width of 10 m and a crest elevation of 6 m above the water surface reference level were 
considered. The groin head is located at about 4.5 m depth, and groin total volume is around 58 000 m³ (Figure 7). 

Considering the groin’s dimension, its direct and indirect construction costs were calculated, representing a 
total first investment costs of about € 1 462 200. Inspired on the Portuguese Northwest coast reality, different 
maintenance costs were adopted for each part of the structure (head and trunk). For the trunk of the groin, 
maintenance works are required every five years and consequent costs are about € 340 000, 30% of its construction 
cost. For the head of the structure, 50% of the respective construction cost was considered, every 2 years (about € 
160 000). Benefits were defined based on shoreline evolution, taking into account every year accretion and erosion 
areas and the unitary land values defined in the reference scenario (Figure 6 and Table 1). 

 

 
Figure 5. Schematization of the groin baseline scenario. 

 

 
Figure 6. Shoreline position in the groin baseline scenario, along the time (cross-shore scale 10 times the longshore 
scale). 

 
3.3 Longitudinal revetment baseline scenario 

The longitudinal revetment baseline scenario encompasses a 1500 m’ length structure, with a crest elevation of 
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6 m, over the entire urbanized zone (Figure 8). 
This scenario ensures the total protection of the urbanized zone and results in smaller shoreline retreat rates near 

the northern border, when compared with the reference scenario, but similar to the ones obtained in the groin 
baseline scenario (Figure 9).  
 

 
Figure 7. Groin cross Section in the baseline scenario (groin head section). 

 

 
Figure 8. Schematization of the longitudinal revetment baseline scenario.  

 
Figure 9. Shoreline position in the longitudinal revetment baseline scenario, along the time (cross-shore scale 10 
times the longshore scale). 
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The longitudinal revetment cross-section presents constant characteristics (resistant layer and filters, crest width 
and elevation, and slope) along the coastline, similar to the ones adopted to the groin cross-section. The total 
volume of the structure is around 132 000 m³, which represents a construction total first investment costs of about 
2 million euros. Maintenance costs were based on a percentage of the initial investment (30%, which corresponds 
approximately to 600 thousand euros), every 5 years. Overtopping and flooding events were not considered during 
the simulation period. 

 
3.4 Artificial nourishments baseline scenario 

The artificial nourishment baseline scenario considers the nourishment of 1 million m³ of sediments, every 5 
years, at an average rate of 10 thousand m³ per day. It was estimated a unitary sediments nourishment cost of 2 
€/m³. The nourished area is characterized by a longshore extension of 500 m, centred in the urbanized zone and 
covering the entire cross-shore active profile width, approximately 600 m (Figure 10). 

Shoreline evolution numerical modelling results show that nourishing the coastal system will significantly 
decrease the erosion areas over the 20 years of simulation, mainly in the southern locations of the spatial domain. 
However, this scenario does not ensure the total protection of the urbanized zone (Figure 11).  

 

 
Figure 10. Schematization of the artificial nourishment baseline scenario. 

 

 
Figure 11. Shoreline position in the artificial nourishment baseline scenario, along the time (cross-shore scale 10 
times the longshore scale). 
 

This coastal intervention scenario is characterized by adding 4 million m³ of sediments to the coastal system 
over the 20 years of simulation. The total costs are related to the material unit cost (2 €/m³), which encompasses 
all the nourishment operations: sediments dredging, transport and deposition. The initial investment was 2 million 
euros corresponding to the first nourishment and the total investment at the end of the 20 years of simulation was 
around 6.5 million euros, considering the discount rate applied to the 4 performed interventions along time. 
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3.5 Sand by-pass baseline scenario 
The sand by-pass baseline scenario (Figure 12) was characterized by a fixed structure located in the upper limit 

of the urbanized zone (1 km far from the northern border of the spatial domain), which was assumed to represent 
an initial cost of 3 million euros (sand by-pass structure system costs). The sediments flow transposed by the 
system was assumed to fulfil about 90% of the potential wave climate sediment transport capacity at the beginning 
of the reference scenario, estimated through the CERC formula, SPM, 1984 (25 m³/hour, approximately 219 000 
m³/year). Each m³ of transposed sediments were assumed to cost 1 €/m³, which simultaneously encompasses 
operation costs and by-pass structure system maintenance costs. 

In this scenario, shoreline evolution shows smaller retreat rates near the northern border, when compared with 
the reference scenario (Figure 13). However, erosion is still verified in the spatial domain, which is justified due 
to the lower transposed sediments flow rate than the potential sediments transport capacity. Due to the adopted 
location for the transposition system, no shoreline retreat is observed along the urbanized zone, over the 20 years 
of simulation. 

The costs involved in this scenario include the required initial investment to install the fixed sand by-pass 
transposition system (admitted being 3 million euros) and the continuous operation/maintenance costs, which was 
assumed to represents an annual value of 219 000 €. 

 

 
Figure 12. Schematization of the by-pass baseline scenario. 

 

 
Figure 13. Shoreline position in the by-pass baseline scenario, along the time (cross-shore scale 10 times the 
longshore scale). 

 
3.6 Interventions characteristics scenarios 

Four different baseline scenarios were presented. However, intervention characteristics may be changed, which 
lead to different simulation results. Thus, different hypothetical scenarios were additionally proposed to discuss 
intervention characteristics influence on each type of baseline scenario (Table 2). 
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Table 2. Coastal erosion mitigation scenarios characteristics. 
   1 2 3 4 

Groin 

Length 𝑖𝑖 𝐿𝐿 = 100 m 𝐿𝐿 = 300 m 𝐿𝐿 = 400 m - 
Location 𝑖𝑖𝑖𝑖 𝑃𝑃 = 1.5 km 𝑃𝑃 = 2.0 km 𝑃𝑃 = 3.0 km 𝑃𝑃 = 3.5 km 

Number of groins 𝑖𝑖𝑖𝑖𝑖𝑖 2 groins spaced 
by 500 m 

2 groins spaced 
by 1000 m 

3 groins spaced 
by 500 m 

- 

Longitudinal 
revetment 

Length 𝑖𝑖𝑖𝑖 𝐿𝐿 = 500 m 𝐿𝐿 = 1 000 m -  
Crest elevation 𝑣𝑣 𝐶𝐶 = 5 m 𝐶𝐶 = 4 m -  

Combination with 
baseline groin 

𝑣𝑣𝑣𝑣 Groin and  
𝐿𝐿 = 500 m 

Groin and  
𝐿𝐿 = 1 000 m 

Groin and  
𝐿𝐿 = 1 500 m 

- 

Artificial 
nourishments 

Extension 𝑣𝑣𝑣𝑣𝑣𝑣 1 000 m (north) 1 000 m (south) 1 500 m - 
Location 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 500 m (north) 500 m (south) - - 

Frequency 𝑖𝑖𝑖𝑖 400 thousand m³ 
every 2 years 

2 million m³ 
every 10 years 

- - 

Volume 𝑥𝑥 half a million m³ 2 million m³ - - 

By-pass 

Location 𝑥𝑥𝑥𝑥 500 m from the 
northern border 

- - - 

Sediments 
flow 

𝑥𝑥𝑥𝑥𝑥𝑥 10% transport 
rate 

50% transport 
rate 

150% transport 
rate 

- 

 
Three main aspects were considered to test the groin scenarios: length, location and number of groins. Longer 

structures promote a bigger barrier to the littoral drift and provide more effective protection to the updrift areas, 
but increase the intervention costs and the shoreline evolution negative impacts at downdrift. The best groin 
location should correspond to the downdrift limit of the area to protect, but it is important to understand the groin 
location influence in the physical and economic results over time. Groins fields consider the conjugation of 
different number of groins and their location. The influence of the groin length (group 𝑖𝑖, with three different 
scenarios), groin location (four scenarios in group 𝑖𝑖𝑖𝑖) and number of groins (three combinations in group 𝑖𝑖𝑖𝑖𝑖𝑖) were 
analysed. 

The longitudinal revetment length must be in accordance with the coastline extension to be protected [81]. To 
avoid overtopping events (which can trigger the toe scour and, consequently, the rubble mound collapse), the 
structure height should be as large as possible. However, the high costs and/or the aesthetic constraints prevent the 
choice of long and high structures, making urban fronts more susceptible to erosion, overtopping and flooding 
events. Another important aspect are the scenarios that combine longitudinal revetment and groin, mitigating 
downdrift groin erosion. Thus, these aspects were analysed in additional 7 scenarios, divided by groups 𝑖𝑖𝑖𝑖, 𝑣𝑣 and 
𝑣𝑣𝑣𝑣 (Table 2). 

Despite the artificial nourishment’s positive impacts on shoreline evolution, this type of intervention represents 
significant costs and is often regarded by society as ephemeral solutions. Then, strategic planning of artificial 
nourishments is required, depending on nourishments extension, location, frequency and volume of sediments, etc. 
These aspects were analysed in 9 different scenarios, combined as groups 𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 𝑖𝑖𝑖𝑖 and 𝑥𝑥 (Table 2). 

Finally, two groups of scenarios were defined to evaluate sand by-pass main characteristics, related to its 
location and by-passing sediments flow capacity (group 𝑥𝑥𝑥𝑥 and 𝑥𝑥𝑥𝑥𝑥𝑥, with one and three scenarios, respectively). 
The following section presents, compares and discusses the physical and economic results of each of the described 
scenarios. 
 
4. Results 
 

The main results of all the analysed scenarios are presented and discussed here, including each baseline scenario 
and the other 30 alternatives (10 groins, 7 longitudinal revetments, 9 artificial nourishments and 4 sand by-pass 
scenarios), organized in four different sections. Final remarks highlight the major outlines of this section, which 
intended to describe the type of analysis that can be developed by applying the proposed methodology. 
 
4.1 Groin scenarios 

Groin baseline scenario (Figure 6) shows that the groin impact on the shoreline evolution is positive at updrift, 
resulting in 2.4 ha accretion area (which protects partially the urbanized and most valuable zone). However, at the 
global level, the baseline scenario (BS) presents a total erosion area above the reference scenario, representing 
losses of around 4 ha, and a general negative physical impact. However, this scenario is economically positive, 
and after seven years, the break-even point is reached. Despite the costs with the groin, the benefits resulting from 
the intervention represent economic gains of about 12 million euros at the end of the 20 years (resulting from the 
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areas gained updrift the groin, where the land value is higher). Thus, the groin baseline scenario net present value 
(NPV) after the 20 years’ was about 8 million euros. 

Table 3 shows the total accreted and eroded areas after 20 years (and the respective physical impact) and 
presents the economic results (BCR and NPV values after 20 years, initial and total costs and break-even point) 
corresponding to all the groin scenarios, allowing a quantitative comparison between them. 
 

Table 3. Summary of the physical and economic results of the groin scenarios. 

Scenario 
Territory area (ha) BCR20 

yr 

(-) 

NPV20 yr  
(€) 

Costs Break-even 
(years) Accretion Erosion Impact Initial (€) Total* (€) 

𝐵𝐵𝐵𝐵 Figure  5 2.4 43.2 -4.2 3.31 8 316 103 1 462 293 3 602 359 7 
𝑖𝑖.1 𝐿𝐿 = 100 m 892 380 523 -14 173 1.48 1 263 061 975 627 2 615 491 15 
𝑖𝑖.2 𝐿𝐿 = 300 m 74 985 474 373 -33 930 2.96 11 612 679 2 291 617 5 925 785 9 
𝑖𝑖.3 𝐿𝐿 = 400 m 82 665 478 971 -30 849 2.06 9 150 555 3 263 128 8 670 313 11 
𝑖𝑖𝑖𝑖.1 𝑃𝑃 = 1.5 km 18 079 408 178 -24 641 -0.82 -6 556 228 

1 462 293 3 602 359 

- 
𝑖𝑖𝑖𝑖.2 𝑃𝑃 = 2.0 km 20 264 420 936 -35 214 1.20 714 226 19 
𝑖𝑖𝑖𝑖.3 𝑃𝑃 = 3.0 km 30 406 442 447 -46 583 2.18 4 259 681 11 
𝑖𝑖𝑖𝑖.4 𝑃𝑃 = 3.5 km 37 796 454 131 -50 878 1.45 1 624 686 16 

𝑖𝑖𝑖𝑖𝑖𝑖.1 2 groins spaced by 
500 m 38 066 446 802 -43 278 2.01 7 291 156 

2 924 586 7 204 718 
11 

𝑖𝑖𝑖𝑖𝑖𝑖.2 2 groins spaced by 
1000 m 36 084 435 472 -33 930 1.79 5 678 216 13 

𝑖𝑖𝑖𝑖𝑖𝑖.3 3 groins spaced by 
500 m 34 478 432 924 -32 988 1.24 2 560 639 4 386 879 10 807 077 17 

*Values updated for initial simulation instant, according to the discount rate (r). 
 
4.1.1 Length 

Three additional groin lengths were tested to compare the results with the baseline scenario (BS with 200 m): 
100 m, 300 m and 400 m, respectively: scenario i.1, i.2 and i.3 (Table 2). Each scenario total initial costs range 
from approximately € 1 million to € 3.3 million, depending on groin length. After 20 years, shoreline evolution 
shows a physical negative impact (regardless the groin length, Table 3), increasing the erosion areas when 
compared to the reference scenario. The sediments deposition updrift the 100 m groin resulted in a small accretion 
area (less than 0.1 ha), but when extending the groin length, sediments deposition is higher, increasing the 
protection effectiveness of the urbanized zone. All the scenarios show generalized erosion at downdrift the groin 
and the total erosion area increases with the length of the groin. 

The economic impact at the end of the simulation period (20 years) is positive in all the scenarios. The highest 
BCR corresponds to the baseline scenario. If there are initial financial constrains to perform an intervention, the 
scenario corresponding to the smaller groin (100 m) may be a more feasible option (groin construction and 
maintenance cost over time is lower). However, this scenario break-even is reached after 15 years. If the 
intervention main goal is increasing the beach area in front of the urbanized zone, the two longer groin scenarios 
are more effective. The groin with 300 m corresponds to the scenario that returns the highest net present value 
after 20 years. The 400 m groin results in larger accretion areas. In conclusion, each groin length scenario presents 
advantages and simultaneously disadvantages and thus, the decision on adequate groin length will depend on the 
goals of the intervention. 
 
4.1.2 Location 

Four different groin locations were tested: 500 and 1000 m north and south of the initially stipulated position 
(resulting in scenario ii.1, ii.2, ii.3 and ii.4). In this analysis, the costs are the same for all the scenarios, reason 
why the economic indexes are only affected by the gained/lost areas. Economically, the baseline groin scenario 
location is the most advantageous, but this scenario is not the one that presents the highest accretion areas (Table 
3). 

If the groin position is moved to the south, the largest accretion areas will occur in less valuable territory zones. 
On the other hand, if the groin position is moved to the north, there will be higher erosion in the most valuable 
zones. Thus, scenario ii.1 (groin located 1.5 km far from the northern border) is not economically adequate. 
However, this is the scenario with the best physical results after 20 years. Scenario ii.2 is economically effective 
after 19 years and corresponds to the second best physical impact. The scenarios where the groin is located south 
of the groin baseline scenario (ii.3 and ii.4) are economically efficient (although the BCR values are lower than 
those obtained in the baseline scenario), but the erosion areas are higher than those obtained for the baseline 
scenario (erosion area increases with increasing distance from the groin to the northern border). 
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Summarizing, the better economic groin location scenario corresponds to the baseline scenario, where the groin 
is considered in the southern limit of the urbanized zone. However, if the decision criteria are to avoid generalized 
erosion, the better groin location should be as far from the north as possible, even if the accretion areas at the 
urbanized zone are lower and consequently, represent less protection to this zone. 

 
4.1.3 Number of groins 

Three different groin field scenarios were considered, always keeping the groin characteristics and the groin of 
the baseline scenario: scenario iii.1, groin located 500 m to the north (2.0 km far from the northern border); 
scenario iii.2, groin located 1000 m to the north; and scenario iii.3, considering three groins, combining the two 
previous location scenarios. The number of groins considered in each scenario has a direct influence on 
construction and maintenance costs along the 20 years. Initial costs are € 1 462 293, € 2 924 586 and € 4 386 879, 
respectively, to one, two or three groins. As previously referred, scenario iii.1 presents negative physical impacts 
when compared to the baseline scenario (Table 3). However, the scenarios iii.2 and iii.3 shoreline evolution 
impacts are less negative, resulting in lower erosion (about 1 ha difference). In opposition to the physical analysis, 
the scenario with the highest BCR corresponds to the baseline scenario and the worst economic results are obtained 
for the three groins scenario. Thus, the increased investment associated with the construction and maintenance of 
the three groins, despite being monetized approximately after 17 years, is not as economic competitive as the 
baseline scenario. 

 
4.2 Longitudinal revetments scenarios 

An overall analysis of the longitudinal revetment baseline scenario shows that this coastal intervention presents 
both physical and economic positive impacts. In addition, this scenario guarantees the total protection of the 
urbanized zone during all the analysed period and, comparing with the reference scenario, territory losses of about 
20 ha are avoided. From the economic point of view, the longitudinal revetment baseline scenario break-even is 
obtained after 13 years, with an updated total investment of approximately 4 million euros. The physical and 
economic indexes resulting from the longitudinal revetment baseline scenario are shown in Table 4, which also 
summarizes the results obtained for the remaining 7 longitudinal revetment scenarios. 

 
Table 4. Summary of the physical and economic results of the longitudinal revetment scenarios. 

Scenario Territory area (ha) BCR20 yr 

(-) 
NPV20 yr  

(€) 
Costs Break-even 

(years) Accretion Erosion Impact Initial (€) Total* (€) 
𝐵𝐵𝐵𝐵 Figure 8 0 16.6 20.0 2.34 5 078 161 2 052 484 3 777 949 13 
𝑖𝑖𝑖𝑖.1 𝐿𝐿 = 500 m 0 32.7 3.8 1.15 188 168 684 161 1 259 317 19 
𝑖𝑖𝑣𝑣.2 𝐿𝐿 = 1 000 m 0 25.4 11.0 1.77 1 950 645 1 368 322 2 518 633 16 
𝑣𝑣.1 𝐶𝐶 = 5 m 0 16.6 20.0 1.76 3 828 289 1 761 598 5 027 822 14 
𝑣𝑣.2 𝐶𝐶 = 4 m 1.41 2 557 708 1 481 963 6 298 402 16 

𝑣𝑣𝑣𝑣.1 Groin and  
𝐿𝐿 = 500 m 

2.4 

24.6 14.3 2.51 7 336 235 2 146 454 4 861 675 9 

𝑣𝑣𝑣𝑣.2 Groin and  
𝐿𝐿 = 1 000 m 22.4 16.5 2.00 6 123 709 2 830 615 6 120 992 11 

𝑣𝑣𝑣𝑣.3 Groin and  
𝐿𝐿 = 1 500 m 20.9 18.1 1.66 4 893 780 3 514 777 7 380 308 13 

*Values updated for initial simulation instant, according to the discount rate (r). 
 
4.2.1 Length 

Two different longitudinal revetment lengths were tested: scenario 𝑖𝑖𝑖𝑖.1, structure with 500 m; and scenario 
𝑖𝑖𝑖𝑖.2, with 1 000 m (both adjacent to the southern limit of the urbanized zone). For the smaller length scenario, a 
total structure volume of 44 000 m³ was estimated, resulting in an initial cost of € 684 161 and for the longer one, 
88 000 m³ (corresponding to an initial cost of € 1 368 322). All the scenarios present a similar shoreline evolution 
behavior and consequently, similar physical impacts. However, shorter lengths result in larger erosion areas. 
Economically, the best BCR is obtained for the baseline scenario. The scenario 𝑖𝑖𝑖𝑖.1 is the one with higher break-
even and lower economic indexes (see Table 4). 
 
4.2.2 Crest elevation 

The longitudinal revetment crest elevation influences not only the dimension and consequent related costs 
(construction and maintenance), but also the frequency of eventual flooding and overtopping events. Thus, the 
economic relationship between the costs reduction due to the decrease of the revetment crest elevation and the 
increased annual costs due to damages by eventual overtopping events and consequent floods should be analysed. 
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Thus, two complementary scenarios were defined: scenario 𝑣𝑣.1, where a crest elevation of 5 m and an annual cost 
due to the overtopping and flooding events of around 120 thousand euros were defined; and scenario 𝑣𝑣.2, where 
the crest elevation is only 4 m and is hypothetically assumed annual costs of 240 thousand euros due to overtopping 
and consequent floods (Table 5). 
 
Table 5. Longitudinal revetment volume, construction cost and related damages, for different crest elevation 
scenarios. 

  Volume (m³) Initial cost (€) Damage costs (€) 
𝐶𝐶𝐶𝐶 𝐶𝐶 = 6 m 132 000 2 052 484 0 
𝑣𝑣.1 𝐶𝐶 = 5 m 107 625 1 761 598 120 000 
𝑣𝑣.2 𝐶𝐶 = 4 m 85 500 1 481 963 240 000 

 
Lowering the crest of the longitudinal revetment has no impact in the shoreline evolution, and thus, all the 

scenarios present the same shoreline positive impacts, compared with the reference scenario (about 17 ha of erosion 
after 20 years, rather than the 37 ha lost in the reference scenario). The three scenarios also show positive economic 
performance after the 20 years, but the BCR decreases with the decrease of the crest elevation (see Table 4). 

For the defined assumptions, the annual damages resulting from the overtopping and flooding events do not 
monetarily compensate the costs reduction due to the lower crest elevation. However, there are social impacts 
resulting from the higher crest elevation revetments, such as the reduced views and less coastline attractiveness. 
In a real context, these issues (social, touristic, recreational, etc.) should be evaluated and accounted in an economic 
point of view. 
 
4.2.3 Longitudinal revetment combined with groin 

The zone located downdrift the groin baseline scenario (Figure 5) corresponds to a low value zone (forests, 0.20 
€/m²/year), but in spite of that, a longitudinal revetment structure was considered to protect this area from the 
erosion trend anticipated by the groin. Three different longitudinal revetment length scenarios (located 
immediately downdrift the groin) were considered: 500 m (scenario 𝑣𝑣𝑣𝑣.1), 1 000 m (scenario 𝑣𝑣𝑣𝑣.2) and 1 500 m 
(scenario 𝑣𝑣𝑣𝑣.3). Table 6 presents the material volumes and the total cost of the scenarios that combine a groin and 
a longitudinal revetment. 
 

Table 6. Volume and construction cost of the combined groin and longitudinal revetment scenarios. 
  Volume (m³) Total cost (€) 

𝐶𝐶𝐶𝐶 𝐿𝐿 = 1 500 m 132 000 2 052 484 
𝑣𝑣𝑣𝑣.1 Groin and 𝐿𝐿 = 500 m 102 357 2 146 454 
𝑣𝑣𝑣𝑣.2 Groin and 𝐿𝐿 = 1 000 m 146 357 2 830 615 
𝑣𝑣𝑣𝑣.3 Groin and 𝐿𝐿 = 1 500 m 190 357 3 514 777 

 
Longitudinal revetment and groin scenario combination results in a significant erosion reduction over the 20 

years (Table 4). The avoided losses are higher, as the considered length of the longitudinal revetment increases. 
However, the erosion areas of all the combined scenarios are larger than in the longitudinal revetment baseline 
scenario, as those areas are not compensated by the accretion verified at updrift the groin (Table 4). 

The time required to reach the break-even point increases and the BCR and NPV decreases, with the increasing 
length of the longitudinal revetment (Table 4). After 20 years, scenarios 𝑣𝑣𝑣𝑣 .1 and 𝑣𝑣𝑣𝑣 .2 present an economic 
advantage over the longitudinal revetment baseline scenario, although in scenario 𝑣𝑣𝑣𝑣.2 the BCR value is lower. In 
summary, combined scenarios do not present global positive physical impacts, but scenarios 𝑣𝑣𝑣𝑣.1 and 𝑣𝑣𝑣𝑣.2 are 
economically interesting. However, these two scenarios imply higher investment and maintenance costs over the 
20-year simulation, which, due to financial constraints often imposed, may be a hindrance to their implementation. 
 
4.3 Artificial nourishments scenarios 

Artificial nourishment baseline scenario presents a positive physical impact (relative to the reference scenario) 
and reaches the economic equilibrium point before 20 years. Table 7 summarizes the values obtained for the 
artificial nourishment scenarios. The physical analysis of the baseline scenario shows an erosion reduction of about 
23 ha, when compared to the reference scenario. Economically, after 13 years, the benefit inherent to the gained 
and not lost areas exceeds the performed investment. After 20 years, it is verified that the benefits are about 70% 
higher than the total investment costs (BCR = 1.73). 

In the following sections, changes on artificial nourishments baseline scenario characteristics are analysed. 
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Table 7. Summary of the physical and economic results of the artificial nourishments scenarios. 

Scenario 
Territory area (m²) BCR20 yr 

(-) 
NPV20 yr  

(€) 

Costs Break-
even 

(years) Accretion Erosion Impact Initial (€) Total* (€) 

𝐵𝐵𝐵𝐵 Figure  10 2.6 16.6 22.6 1.73 4 733 343 2 000 000 6 497 129 13 
𝑣𝑣𝑣𝑣𝑣𝑣.1 1 000 m (north) 2.1 15.0 23.7 1.82 5 356 332 

2 000 000 6 497 129 
12 

𝑣𝑣𝑣𝑣𝑣𝑣.2 1 000 m (south) 3.5 17.5 22.5 1.68 4 441 918 13 
𝑣𝑣𝑣𝑣𝑣𝑣.3 1 500 m 2.9 16.0 23.4 1.76 4 917 737 13 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.1 500 m (north) 1.3 13.4 24.5 1.80 5 167 493 2 000 000 6 497 129 13 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.2 500 m (south) 3.6 19.0 21.2 1.51 3 311 101 14 

𝑖𝑖𝑖𝑖.1 400 thousand m³ 
every 2 years 2.9 15.5 24.0 1.75 4 643 467 800 000 6 220 104 12 

𝑖𝑖𝑖𝑖.2 2 million m³ every 10 
years 3.3 16.9 23.0 1.98 6 856 026 4 000 000 6 976 376 8 

𝑥𝑥.1 half a million m³ 0.4 23.8 13.2 2.11 3 606 909 1 000 000 3 248 565 9 

𝑥𝑥.2 2 million m³ 11.9 8.9 39.6 1.68 8 842 361 4 000 000 12 994 
259 12 

*Values updated for initial simulation instant, according to the discount rate (r). 
 

4.3.1 Extension 
Different extension areas for nourishment may result in differences on the sediments dynamics and on the 

shoreline evolution and, consequently, in erosion and accretion areas along time. Thus, three scenarios were 
considered, corresponding to extended nourished areas: scenario 𝑣𝑣𝑣𝑣𝑣𝑣.1, extending the nourishment area in 500 m 
in the north direction; scenario 𝑣𝑣𝑣𝑣𝑣𝑣.2, with the same extension of the previous scenario, but prolonged in the south 
direction; scenario 𝑣𝑣𝑣𝑣𝑣𝑣 .3, which covers all the extension of the urbanized area (1 500 m). In the cross-shore 
direction, the nourishment extends along the total active profile width, in all the analysed scenarios. 

Table 7 summarize the results obtained for the three scenarios. Despite the small differences registered between 
scenarios, scenario 𝑣𝑣𝑣𝑣𝑣𝑣.1 presents simultaneously better physical and economic performances. This scenario also 
corresponds to an earlier break-even (12 years instead of the 13 years of the baseline scenario). Considering the 
adopted assumptions, it is slightly positive to extend the nourishment area by 500 m to north. 
 
4.3.2 Location 

The nourishment location may also result in an optimization of the shoreline impacts during the analysed time 
horizon. Two additional scenarios were considered, scenarios 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.1 and 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖.2, which correspond, respectively, to 
move the nourishment area in 500 m to the north and 500 m to the south, in relation to the location adopted in the 
baseline scenario (considering always the initial extension of 500 m). From the analysis of Table 7, it is observed 
that the northern nourishment location results in a smaller loss of territory and, simultaneously, it represents the 
most positive economic scenario (BCR = 1.80, with the break-even reached after 13 years, as in the baseline 
scenario). 
 
4.3.3 Frequency  

The artificial nourishment operations frequency is often related to financial availability and/or the need to 
intervene as a consequence of a storm event. However, for a strategic planning of coastal management, it is 
important to assess and compare the physical and economic performance of frequent nourishments, with a lower 
volume of sediments, or larger volumes in less frequent interventions. For the baseline scenario, 1 million m³ of 
sediments was considered every 5 years. Two other scenarios were considered: more frequent interventions, 
nourishing 400 thousand m³ of sediments every 2 years (scenario 𝑖𝑖𝑖𝑖.1); and spaced interventions in time, with 
higher nourishment volumes (scenario 𝑖𝑖𝑖𝑖.2, nourishing 2 million m³, every 10 years). 

The results obtained for the two scenarios (Table 7) show that the most positive shoreline evolution impacts do 
not correspond to the best economic solution. Considering shorter time intervals between artificial nourishments 
(scenario 𝑖𝑖𝑖𝑖.1), there are smaller land losses over the 20 years, but the economic benefit is higher if only two 
interventions of two million m³ each are performed (scenario 𝑖𝑖𝑖𝑖.2). Although in scenario 𝑖𝑖𝑖𝑖.2 the break-even point 
is lower and the NPV is higher (after 20 years), this scenario requires a higher initial investment (4 million euros, 
while in the scenario 𝑖𝑖𝑖𝑖.1 only 800 thousand euros are needed), which may be a constrain, as the initial financial 
availability is often a conditioning factor in the choice of the coastal mitigation intervention. 
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4.3.4 Volume 
In the previous analysis, artificial nourishment scenarios were based on the nourishment of the same total 

sediment volume (4 million m³), which resulted in approximately the same total intervention costs. Two additional 
artificial nourishment total volume scenarios were analysed: scenario 𝑥𝑥.1, which considers the nourishment of 500 
thousand m³ of sediments every 5 years; and scenario 𝑥𝑥.2, which represents the nourishment of 2 million m³, again, 
every five years. As expected, scenario 𝑥𝑥.2 is physically more attractive, avoiding territory losses of around 40 ha 
(when compared to the reference scenario), while in scenario 𝑥𝑥.1, a positive physical impact of 13 ha was achieved. 
After 20 years, scenario 𝑥𝑥.2 resulted in global accretion when compared to the initial instant (year 0). Despite the 
physical benefits of higher nourishment volumes, the BCR value of scenario  𝑥𝑥 .2 is lower than the one 
corresponding to the scenario 𝑥𝑥.1 (Table 7). However, the solution corresponding to a volume of 2 million m³ 
(scenario 𝑥𝑥.2) is considered attractive after 12 years and, although it represents a higher initial and total investment 
cost, it presents important shoreline evolution benefits. 

 
4.4 Sand by-pass scenarios 

The shoreline evolution model applied to the sand by-pass baseline scenario (Figure 13) results in lower erosion 
rates at the northern border than those obtained for the reference scenario. Due to the sand by-pass system location, 
there is no shoreline retreat in the urbanized zone, guaranteeing its protection throughout the 20 years. Globally, 
this is the most physically attractive coastal defense intervention, because it simultaneously presents smaller land 
losses (positive impact of about 29 ha, when compared to the reference scenario) and promotes the total protection 
of the urbanized zone. Table 8 also shows positive economic impacts, by summarizing the indexes obtained for 
the sand by-pass scenarios, which analysed the influence of the sand by-pass system location and sediments flow 
capacity. 

 
Table 8. Summary of the physical and economic results of the sand by-pass scenarios. 

Scenario 
Territory area (m²) BCR20 yr 

(-) 
NPV20 yr  

(€) 

Costs Break-
even 

(years) Accretion Erosion Impact Initial (€) Total* (€) 

𝐵𝐵𝐵𝐵 Figure  12 9 946 84 454 290 950 1.89 5 548 634 3 000 000 6 258 167 13 

𝑥𝑥𝑥𝑥.1 500 m from the 
northern border 85 65 055 300 487 1.80 4 912 989 3 000 000 6 127 840 14 

𝑥𝑥𝑥𝑥𝑥𝑥.1 10% transport 
rate 0 311 298 54 160 0.73 -977 698 

3 000 000 

3 625 568 - 

𝑥𝑥𝑥𝑥𝑥𝑥.2 50% transport 
rate 63 197 531 167 989 1.61 2 930 383 4 824 574 15 

𝑥𝑥𝑥𝑥𝑥𝑥.3 150% transport 
rate 119 620 6 099 478 979 2.07 9 211 946 8 630 113 12 

*Values updated for initial simulation instant, according to the discount rate (r). 
 
4.4.1 Location 

In the sand by-pass baseline scenario, the system location was chosen to mostly protect the urbanized zone. A 
new scenario was considered, where the by-pass is located 500 m north of the baseline scenario (scenario 𝑥𝑥𝑥𝑥.1). 
Table 8 allows to compare both scenarios, showing that, although there are positive physical impacts by locating 
the by-pass system to the north (a benefit of about 1 ha), this is not economically the best solution. The baseline 
scenario location results in higher BCR ratios and reaches equilibrium one year before the scenario 𝑥𝑥𝑥𝑥.1. 
 
4.4.2 Sediments flow 

Three scenarios were defined to test the sediments flow rates capacity, two of them with a lower flow than the 
baseline scenario, representing 10% and 50% of the wave climate sediments transport capacity, respectively, 
scenario 𝑥𝑥𝑥𝑥𝑥𝑥 .1 and 𝑥𝑥𝑥𝑥𝑥𝑥 .2, and a scenario with 50% higher capacity than the wave climate sediments transport 
capacity (scenario 𝑥𝑥𝑥𝑥𝑥𝑥.3). 

As expected, greater sediment flow transposed by the system results in smaller land losses (Table 8). Comparing 
with the reference scenario, losses of about 5, 16 and 48 ha are avoided, respectively, in scenarios 𝑥𝑥𝑥𝑥𝑥𝑥.1, 𝑥𝑥𝑥𝑥𝑥𝑥.2 and 
𝑥𝑥𝑥𝑥𝑥𝑥.3. The economic performance of the scenarios follows the same trend line, since the scenarios corresponding 
to the greater capacity also correspond to better economic indexes. The scenario 𝑥𝑥𝑥𝑥𝑥𝑥.1 is not monetized within the 
20 years’ time horizon and the scenario 𝑥𝑥𝑥𝑥𝑥𝑥.3 is the most attractive, both physically and economically, with the 
benefits exceeding twice the total costs after the 20 years (BCR = 2.07). In this scenario, at the end of the 20 years, 
accretion was achieved when compared to the initial instant (about 11 ha). As a conclusion, it was verified that the 
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economic performance of the by-pass systems increases with the increased transposition capacity and it is 
ineffective when considering lower sediment flows. 

 
4.5 Final remarks 

The considered case study intended to highlight the potential capacity of the proposed physical and economic 
assessment methodology. The costs and benefits evaluation shown that the main goal of the intervention needs to 
be very well-defined, because a better scenario in one specific aspect may be worst in another one. Although, the 
adopted modelling parameters and values chosen to estimate costs and benefits are representative of a generic 
coastal zone in erosion, the needs of a careful definition of the intervention goals are common to real situations, 
where the evaluation of all the assumptions is required (numerical modelling and adopted monetary values). 

Concerning the case study, all the presented groin scenarios result in a negative physical impact, being the 100 
m groin scenario the one with lower erosion areas and at the same time, presenting the lower initial and total 
investment costs. The groin scenario presenting the earlier break-even is the baseline scenario (groin with 200 m, 
located at the south border of the urbanized zone). The highest net present value after 20 years was obtained to the 
300 m groin scenario and the scenario corresponding to the longer groin is the most effective in protecting the 
urbanized zone. 

In the longitudinal revetment scenarios it was verified that: smaller extension than the one adopted in the 
baseline scenario (1500 m long, in front of all the urbanized zone) results in less attractive physical and economic 
indexes; lower crest elevation lead to an increased number of overtopping events and, consequently, increases the 
required structure maintenance costs (this was the worst economic scenario); and a groin combined with a 
longitudinal revetment scenario was not economically attractive. 

The results obtained for the artificial nourishments scenarios have shown that moving the nourishment location 
and extend its area to the north, represents physical and economic advantages. Frequent nourishment interventions 
with lower sediment volumes will induce larger accretion areas over time, but the greater economic gains 
correspond to a larger nourishment volume with lower intervention frequencies. A higher total volume of 
nourished sediments in the coastal system provides larger accretion areas over all the analysed time period and 
simultaneously results in a higher net present value after 20 years. 

The adopted location of the sand by-pass system baseline scenario was the northern boundary of the urbanized 
zone but moving the system 500 m north results in improved physical impacts (lower erosion). To increase the by-
passing sediments volume capacity results both in better physical and economic indexes. 
 
5. Discussion 
 

The coastal management entities are often asked about the negative effect of a groin at downdrift, the landscape 
degradation due to rocky revetments, or the sediments quick disappearance after artificial nourishment 
interventions, among many other doubts. The goal of the proposed methodology is to contribute to support 
decision-makers on coastal management and planning. The main relevance of the proposed methodology is to 
follow well-defined and sequential stages in an integrated way, considering numerical modelling, coastal 
interventions pre-design, and costs and benefits assessment. All the three stages may result in discussion due to 
the inherent uncertainties to each process. The presented case study was inspired in values adequate for the 
Portuguese Northwest coast (wave climate, shoreline erosion rates, intervention structural characteristics, land use 
values and intervention costs). However, the proposed methodology is adaptable to different shoreline evolution 
numerical models and assumptions, different coastal structures pre-design formulations and mainly, it is easy to 
test different considerations about the land use monetary values and interventions costs. Thus, the presented case 
study allows to get an idea of the type of assessment that may be performed, but the application of the methodology 
to specific situations require an evaluation of every site characteristics [82]. 

Cost-benefit analysis (CBA) is a decision-support tool which incorporates social, economic, and environmental 
impacts. According to [83], robust CBAs that identify the relative costs and benefits of the management options 
will assist coastal local councils, public authorities, and their consultants, helping to make informed choices about 
which management option (or options) will provide the greatest net benefits to their community. However, it is 
not a means of providing a definitive statement of which management option council should adopt. The decision 
on which option council should implement is likely to depend on several other considerations which are not 
addressed in a CBA. However, a well-constructed CBA can provide an important contribution to the information 
council can use in its decision-making processes [83]. In the proposed methodology, the costs and benefits of 
alternative management options are compared with the costs and benefits of the reference scenario to identify any 
incremental differences between this scenario and the alternative ones. A cost-benefits analysis considers direct 
costs and benefits for different groups and also any other positive or negative effects, such as the changes in the 
value of beach recreation and amenity. It should be noted that although individual groups in the community may 
benefit from a particular management action, others may be disadvantaged. However, if the sum of the benefits of 
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a particular option exceeds the sum of the costs incurred, the option would appear to provide an overall benefit. 
The cost-benefits analysis also considers the timing of each of the costs and benefits associated with particular 
options and converts future costs and benefits into today’s prices so that all impacts can be meaningfully compared 
regardless of timing. In this way, the proposed methodology can enable a comparison of options that deliver 
different streams of benefits and costs over time. 

To understand the benefits of coastal intervention scenarios, long-term shoreline evolution estimates are 
required. Long-term simulations of beach change are more reasonably formulated based on total or bulk transport 
models. These models have fewer coefficients than three-dimensional models and provide no details of the 
sediment transport profile. However, they may be calibrated and verified to include the integrated effect of all the 
local processes on the total transport. Thus, one-line models are considered adequate to fulfil the goal of the 
proposed methodology, simulating coastal stretches of 10 to 100’s km and long-term (years to decades) coastline 
evolution that results from gradients in alongshore sediment transport. These models allow exploring how the 
patterns and rates of shoreline erosion and accretion are affected by shifts in wave climate and alongshore sediment 
transport characteristics. Moderate shifts on these parameters can alter the patterns of shoreline erosion and 
accretion, with consequent impact on the developed analysis. 

Pre-design of coastal structures may follow several different formulations, mainly based on the incident wave 
heights to define the adequate block for the armour layer. XD-Coast was developed by [53] in order to facilitate 
the calculation processes, allowing a quick comparison between several alternative solutions, and to allow 
sensitivity analysis about variables involved in the calculations. Therefore, it is considered that the model is 
resourceful, with an intuitive and easy graphical interface, allowing not only isolated calculations, but also repeated 
calculations with increment of several calculation steps for some variables, generating tables of results. These 
tables allow understanding the influence of each parameter in armour layer blocks unit weight, making easy to 
compare the structures definition impacts. 

Finally, as previously referred, the land use provided services are essential to define the value of the territory 
and an adequate sensitivity analysis should be performed to well characterize the land use value. [84] refers that 
benefit transfer is a technique in which the results of studies on monetary land use valuation are applied. This is a 
controversial technique because of academic and political reservations over the usefulness and technical feasibility 
of economic valuation of tools to demonstrate the importance of land use values in project or programme 
appraisals. An important part of the land use economics profession is to value land use in monetary terms, i.e., 
estimate how much people are willing to give up of other goods and services they consume in exchange for a better 
land use.  The rationale is to make the benefits of a better land use transparent and comparable with other costs 
and benefits in private and public decision-making that typically have market values, such as goods, working 
hours, etc. Different land use values have increasingly been recognized as an important decision-making support 
in developing multi-functional policies. The use of such values in policy-making is already common. Increased 
use is fed by demand from public agencies, as well as growing academic interest. Therefore, many practical 
applications by different public agencies and consultancies use information about values from existing studies and 
transfer to unstudied, similar sites of policy interest. The approach tries to mitigate this gap in the usual procedures, 
making easier to develop and include costs and benefits assessments on coastal erosion mitigation strategies 
definition. 
 
6. Conclusions 
 

This work aimed to present a well-defined and sequential approach, applied in an integrated way, to evaluate 
costs and benefits of different coastal intervention scenarios. The methodology was applied to a hypothetical case 
study, to compare and discuss different coastal intervention scenarios (groins, longitudinal revetments, artificial 
nourishments and sand by-pass systems), through assessing their physical and economic effectiveness.  

34 coastal intervention scenarios were evaluated (4 baseline scenarios and 30 scenarios discussing different 
intervention characteristics) to mitigate persistent coastal erosion problems identified in a reference scenario. In 
all the baseline scenarios, it was verified that it is economically adequate to perform interventions to mitigate the 
coastal erosion problems. However, despite the investment made in all the intervention scenarios, it was also 
observed a general trend of land losses along the 20 years analysed period, when compared to the initial instant 
(year 0). The no intervention scenario represents high economic losses. When performing the different coastal 
intervention scenarios, significant physical (reducing land losses) and economic improvements can be achieved. 
The obtained results also show that it is difficult to combine, in the same intervention scenario, the best option 
considering both physical and economic factors. Thus, when defining and designing the intervention it is 
fundamental to make clear all the objectives of the intervention, considering the extension of the urban zone to 
protect, the initial investment, the generalized erosion, the time needed to recover the investment made, the general 
physical impacts or net present value, etc. 

39

M. Lima et al. Journal of Modeling and Optimization 2021;13(1):22-43



 

 
 

The potential application of the presented hypothetical study case results to real world situations is naturally 
limited by the specific conditions of each situation (land use values, but also wave climate conditions, coastal 
intervention characteristics and scenarios, etc.). However, the case study is demonstrative that the methodology 
can be replicable to other study sites, considering their specific characteristics. The easy approach defined by the 
methodology allows a quick sensitivity analysis to those conditions, permitting its general worldwide application. 
Thus, it is considered that the proposed methodology represents one step toward a well-supported decision-making 
process, helping on coastal management and planning.  
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