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Abstract: The weak formulation of mixed state equations including boundary conditions are presented in polar 
coordinate system, mixed variational formulation is established in sectorial domain. The fractal finite element 
method is used to analyse the sector domain problem. The present result is exactly analogous to the Hamiltonian 
mechanics for a dynamic system by simulating time variable t with coordinate variable r. The stress singularity at 
singular point is investigated by means of the fractal finite element method. The present study satisfies the 
continuity conditions of stresses and displacements at the interfaces. The principle and method suggested here 
have clear physical concepts. So this method would be easily popularized in dynamics analysis of elasticity.  
Keywords: Hamilton system; sectorial domain; mixed equation; stress singularity; fractal finite element. 
 
 
1. Introduction 

 
The finite element method has experienced the development and evolution from a single mechanical variable 

to a number of mechanical variables. The traditional finite element method with a single displacement variable is 
the simplest method. Its fundamental difficulty is that it is difficult to give a smooth element function with 
geometric invariance and full expression, and the precision is not very high [1]. The multi-variable finite element 
method can not only solve the problem of first-order continuous differentiable smoothness at the junction of 
function curves, but also obtain the elements with good precision. However, the multi-variable finite element 
method is very likely to be short of rank [2]. The quasi-conforming finite element method proposed creatively by 
[3] does not require the stress variable to satisfy the equilibrium equation in advance, and the process of calculating 
the inverse matrix is omitted to obtain the higher discrete precision of the strain. The same interpolation function 
is selected on the element interface by the quasi-conforming finite element method and its mechanical concept is 
explained clearly by [4]. There is a direct relationship between the quasi - conforming element and the generalized 
variational principle [5] and it is proved that the quasi-conforming element is convergent and effective [5]. The 
advantage of the generalized conforming element method proposed by [7] is able to realize the displacement 
deformation compatibility between elements on the node displacement. and can ensure the convergence of the 
solution due to the reduction of degree of freedom. 

The theory of elastic mechanics and symplectic algorithm under the Hamilton system have been 
unprecedentedly developed. However, there are few studies on applying the symplectic algorithm to obtain 
numerical solution of elastic mechanics. Considering the special properties of Hamiltonian matrix, author proposed 
an effective symplectic algorithm based on weak formulation of equations to solve such problems. As discussed 
in the previous work [8-15], weak formulation of generalized equation is the intrinsic essence of quasi-conforming 
finite element, and it is also the common basis of the quasi-conforming element and the Hamiltonian element. The 
numerical solution is the exact solution of generalized compatibility equations and satisfies the weak continuity 
requirement naturally. 

The present paper extends such method to the singularity study of sectorial domain. Based upon the weak 
formulation of mixed state equations including boundary conditions, mixed variational formulation is established 
in sectorial domain. The stress singularity at singular point is investigated by means of the fractal finite element 
method. 

 
2. Weak Formulation 

 
A sectorial domain is used. Let u and w be the displacement in the r- and 𝜃𝜃 −directions. Also, let 𝛺𝛺, 𝑆𝑆 and fi 

be area, boundary line and body forces, respectively. 𝑝𝑝𝑟𝑟 and 𝑝𝑝𝜃𝜃  are the surface force in the radial direction and 
the circumferential direction, respectively. The equilibrium equation in the radial direction for 𝛿𝛿𝛺𝛺 can be written 
as 
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� 𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑
𝛿𝛿𝛿𝛿

+ � 𝑓𝑓𝑟𝑟𝑑𝑑𝛺𝛺
𝛿𝛿𝛿𝛿

= 0 
 
when 𝑝𝑝𝑟𝑟  acting on partial boundary 𝑆𝑆𝜎𝜎 , for all area and has 
 

� 𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑
𝛿𝛿−𝛿𝛿𝜎𝜎

+ � 𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑
𝛿𝛿𝜎𝜎

+ �𝑓𝑓𝑟𝑟𝑑𝑑𝛺𝛺
𝛿𝛿

= 0 
 
Rewriting above equation and we have  
 

�𝑝𝑝𝑟𝑟𝑑𝑑𝑑𝑑
𝛿𝛿

+ � �𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑟𝑟�𝑑𝑑𝑑𝑑 + �𝑓𝑓𝑟𝑟𝑑𝑑𝛺𝛺
𝛿𝛿𝛿𝛿𝜎𝜎

= 0 
 
By means of green-formulation we can obtain 
 
∬ �𝜕𝜕𝜎𝜎𝑟𝑟

𝜕𝜕𝑟𝑟
+ 1

𝑟𝑟
𝜕𝜕𝜎𝜎𝑟𝑟𝑟𝑟
𝜕𝜕𝜃𝜃

+ 𝜎𝜎𝑟𝑟−𝜎𝜎𝑟𝑟
𝑟𝑟

+ 𝑓𝑓𝑟𝑟�𝛿𝛿 𝑑𝑑𝛺𝛺 + ∫ �𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑟𝑟�𝛿𝛿𝜎𝜎
𝑑𝑑𝑑𝑑 = 0                                      (1a) 

 
The equilibrium equation in the tangential direction for 𝛿𝛿𝛺𝛺 can be written as 
 

� 𝑝𝑝𝜃𝜃𝑑𝑑𝑑𝑑
𝛿𝛿𝛿𝛿

+ � 𝑓𝑓𝜃𝜃𝑑𝑑𝛺𝛺
𝛿𝛿𝛿𝛿

= 0 
 
for all area one has  
 

�𝑝𝑝𝜃𝜃𝑑𝑑𝑑𝑑
𝛿𝛿

+ � �𝑝𝑝𝜃𝜃 − 𝑝𝑝𝜃𝜃�𝑑𝑑𝑑𝑑 + �𝑓𝑓𝜃𝜃𝑑𝑑𝛺𝛺
𝛿𝛿𝛿𝛿𝜎𝜎

= 0 
 
By means of green-formulation too, one has 
 
∬ �𝜕𝜕𝜎𝜎𝑟𝑟𝑟𝑟

𝜕𝜕𝑟𝑟
+ 1

𝑟𝑟
𝜕𝜕𝜎𝜎𝑟𝑟
𝜕𝜕𝜃𝜃

+ 2𝜎𝜎𝑟𝑟𝑟𝑟
𝑟𝑟

+ 𝑓𝑓𝜃𝜃� 𝑑𝑑𝛺𝛺 + ∫ �𝑝𝑝𝜃𝜃 − 𝑝𝑝𝜃𝜃�𝛿𝛿𝜎𝜎
𝑑𝑑𝑑𝑑 = 0𝛿𝛿             (1b) 

 
In light of definition of in the radial direction strain on 𝛿𝛿𝛺𝛺, has 
 

� 𝑒𝑒𝑟𝑟
𝛿𝛿𝛿𝛿

𝑑𝑑𝛺𝛺 = � 𝑢𝑢 ⋅ 𝑛𝑛𝑟𝑟
𝛿𝛿𝛿𝛿

𝑑𝑑𝑑𝑑 
 
when 𝑢𝑢 = 𝑢𝑢 on 𝑆𝑆𝑢𝑢, then for all area 
 

�𝑒𝑒𝑟𝑟
𝛿𝛿

𝑑𝑑𝛺𝛺 = � 𝑢𝑢 ⋅ 𝑛𝑛𝑟𝑟
𝛿𝛿−𝛿𝛿𝑢𝑢

𝑑𝑑𝑑𝑑 + � 𝑢𝑢 ⋅ 𝑛𝑛𝑟𝑟
𝛿𝛿𝑢𝑢

𝑑𝑑𝑑𝑑 
 
yields 
 

�𝑒𝑒𝑟𝑟
𝛿𝛿

𝑑𝑑𝛺𝛺 = �𝑢𝑢 ⋅ 𝑛𝑛𝑟𝑟
𝛿𝛿

𝑑𝑑𝑑𝑑 + � (𝑢𝑢 − 𝑢𝑢) ⋅ 𝑛𝑛𝑟𝑟
𝛿𝛿𝑢𝑢

𝑑𝑑𝑑𝑑 
 
By means of green-formulation, the radial direction generalized conforming equation as follows 
 
∬ �𝜕𝜕𝑢𝑢

𝜕𝜕𝑟𝑟
− 𝑒𝑒𝑟𝑟� 𝑑𝑑𝛺𝛺𝛿𝛿 + ∫ (𝑢𝑢 − 𝑢𝑢)𝑛𝑛𝑟𝑟𝑑𝑑𝑑𝑑𝛿𝛿𝑢𝑢

= 0               (2a) 
 
similar to equation (2a), we have below equations 
 
∬ �𝑢𝑢

𝑟𝑟
+ 1

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃
− 𝑒𝑒𝜃𝜃� 𝑑𝑑𝛺𝛺𝛿𝛿 + ∫ (𝑤𝑤 − 𝑤𝑤)𝑛𝑛𝜃𝜃𝑑𝑑𝑑𝑑𝛿𝛿𝑢𝑢

= 0                                              (2b) 

∬ �1
𝑟𝑟
𝜕𝜕𝑢𝑢
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
− 𝜕𝜕

𝑟𝑟
− 𝑒𝑒𝑟𝑟𝜃𝜃� 𝑑𝑑𝛺𝛺 + ∫ �(𝑢𝑢 − 𝑢𝑢)𝑛𝑛𝜃𝜃 + (𝑤𝑤 − 𝑤𝑤)𝑛𝑛𝑟𝑟�𝛿𝛿𝑢𝑢𝛿𝛿 𝑑𝑑𝑑𝑑 = 0                            (2c) 
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in which the usual index notation is used. Sσ and Su denote respectively the portion of the edge boundary where 
tractions 𝑝𝑝𝑖𝑖 are prescribed and where displacements 𝑢𝑢𝑖𝑖 are prescribed. The stress-strain relations of isotropy is 
(for plane stress problem) 

 

�
𝜎𝜎𝑟𝑟
𝜎𝜎𝜃𝜃
𝜎𝜎𝑟𝑟𝜃𝜃

� = 𝐸𝐸
(1−𝜈𝜈2)

�
1 𝜈𝜈 0
𝜈𝜈 1 0
0 0 1−𝜈𝜈

2

� �
𝑒𝑒𝑟𝑟
𝑒𝑒𝜃𝜃
𝑒𝑒𝑟𝑟𝜃𝜃

�,   �
𝑒𝑒𝑟𝑟
𝑒𝑒𝜃𝜃
𝑒𝑒𝑟𝑟𝜃𝜃

� = 1
𝐸𝐸
�

1 −𝜈𝜈 0
−𝜈𝜈 1 0
0 0 2(1 + 𝜈𝜈)

� �
𝜎𝜎𝑟𝑟
𝜎𝜎𝜃𝜃
𝜎𝜎𝑟𝑟𝜃𝜃

�                        (3) 

 
For plane strain problem, one has 
 

�
𝜎𝜎𝑟𝑟
𝜎𝜎𝜃𝜃
𝜎𝜎𝑟𝑟𝜃𝜃

� =
𝐸𝐸

(1 + 𝜈𝜈)(1 − 2𝜈𝜈) �

1 − 𝜈𝜈 𝜈𝜈 0
𝜈𝜈 1 − 𝜈𝜈 0

0 0
1 − 2𝜈𝜈

2

� �
𝑒𝑒𝑟𝑟
𝑒𝑒𝜃𝜃
𝑒𝑒𝑟𝑟𝜃𝜃

� 

 
Substituting equation (3) into equations (2a), (2b) and (2c), then integrating by the weight function, i.e. multiply 

(1a) and (1b) by δu, δw and multiply (2a)-(2c) by 𝛿𝛿𝜎𝜎𝑟𝑟, 𝛿𝛿𝜎𝜎𝜃𝜃, 𝛿𝛿𝜎𝜎𝑟𝑟𝜃𝜃, respectively. One denotes 𝒒𝒒 = (𝑢𝑢,𝑤𝑤)𝑇𝑇 ,𝒑𝒑 =
( 𝜎𝜎𝑟𝑟 ,𝜎𝜎𝑟𝑟𝜃𝜃 )𝑇𝑇 , 𝑝𝑝1 =   𝜎𝜎𝜃𝜃 , 𝑭𝑭 = (𝜎𝜎𝑟𝑟 ,𝜎𝜎𝑟𝑟𝜃𝜃 ,𝑢𝑢,𝑤𝑤)𝑇𝑇 , weak formulation of mixed state equation including boundary 
conditions of sectorial domain can be obtained 

 
∬ 𝛿𝛿𝑭𝑭𝑢𝑢𝛿𝛿 ⋅ 𝜕𝜕

𝜕𝜕𝑟𝑟
𝑭𝑭𝑑𝑑𝛺𝛺 = ∬ 𝛿𝛿𝑭𝑭𝑢𝑢𝛿𝛿 ⋅ (𝑯𝑯𝑭𝑭 + 𝑻𝑻 + 𝑫𝑫𝟏𝟏𝑝𝑝𝟏𝟏)𝑑𝑑𝛺𝛺 + ∫ 𝛿𝛿𝑭𝑭𝑢𝑢 ⋅ 𝑺𝑺1𝛿𝛿 𝑑𝑑𝑑𝑑      (4) 

∬ 𝛿𝛿𝑝𝑝𝟏𝟏 ⋅ (𝑫𝑫𝟐𝟐𝑭𝑭 + 1
𝐸𝐸
𝑝𝑝𝟏𝟏)𝑑𝑑𝛺𝛺 + ∫ 𝛿𝛿𝑝𝑝𝟏𝟏 ⋅ (𝑤𝑤 − 𝑤𝑤)𝑛𝑛𝜃𝜃𝑑𝑑𝑑𝑑 = 0𝛿𝛿𝛿𝛿       (5) 

 
where 

 

𝛿𝛿𝑭𝑭𝑢𝑢 = �

𝛿𝛿𝑢𝑢
𝛿𝛿𝑤𝑤

𝛿𝛿𝜎𝜎𝑟𝑟
𝛿𝛿𝜎𝜎𝑟𝑟𝜃𝜃

�
, 
𝑺𝑺𝟏𝟏 =

⎣
⎢
⎢
⎢
⎡ 𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑟𝑟

𝑝𝑝𝜃𝜃 − 𝑝𝑝𝜃𝜃
(𝑢𝑢 − 𝑢𝑢)𝑛𝑛𝑟𝑟

(𝑤𝑤 −𝑤𝑤)𝑛𝑛𝑟𝑟 + (𝑢𝑢 − 𝑢𝑢)𝑛𝑛𝜃𝜃⎦
⎥
⎥
⎥
⎤

, 
𝑯𝑯 =

⎣
⎢
⎢
⎢
⎢
⎡−

1
𝑟𝑟

− 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜃𝜃

0 0

0 −2
𝑟𝑟

0 0
1
𝐸𝐸

0 0 0

0 2(1+𝜈𝜈)
𝐸𝐸

− 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜃𝜃

1
𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎤

,  

𝑫𝑫𝟏𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡

1
𝑟𝑟

− 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜃𝜃

− 𝜈𝜈
𝐸𝐸

0 ⎦
⎥
⎥
⎥
⎥
⎤

, 
𝑫𝑫2 =

⎣
⎢
⎢
⎢
⎢
⎡ −

𝜈𝜈
𝐸𝐸

0
−1

𝑟𝑟

− 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜃𝜃⎦
⎥
⎥
⎥
⎥
⎤
𝑇𝑇

,
𝑻𝑻 = �

−𝑓𝑓𝑟𝑟
−𝑓𝑓𝜃𝜃

0
0

�
 

 
3. Hamilton Equation 

 
Consider a sectorial domain with two clamped edges (𝜃𝜃 = 0 and 𝜃𝜃 = 𝛩𝛩). We introduce 
 
𝜎𝜎𝜃𝜃 = 𝜎𝜎𝜃𝜃 + 𝑈𝑈(𝜃𝜃)𝑎𝑎(0) + 𝑈𝑈(𝜃𝜃 − 𝛩𝛩)𝑎𝑎(𝛩𝛩)                                                      (6) 
 
𝑈𝑈(𝜃𝜃),𝑈𝑈(𝜃𝜃 − 𝛩𝛩) are unit pulse function, 𝑎𝑎(0), 𝑎𝑎(𝛩𝛩) is unknown coefficient at 𝜃𝜃 = 0,𝛩𝛩, respectively. (note, 

we can introduce three different hypothesis for this problem ) 
Expand the quantities in equations (4) and (5) into the following series system (𝜁𝜁 = 𝑛𝑛𝑛𝑛 𝛩𝛩)⁄  
 
𝑢𝑢 = ∑ 𝑢𝑢𝑛𝑛(𝑟𝑟) 𝑑𝑑𝑠𝑠𝑛𝑛 𝜁𝜁 𝜃𝜃, 𝑛𝑛 𝑤𝑤 = ∑ 𝑤𝑤𝑛𝑛(𝑟𝑟) 𝑐𝑐𝑐𝑐𝑑𝑑 𝜁𝜁 𝜃𝜃, 𝑛𝑛 𝜎𝜎𝑟𝑟 = ∑ 𝜎𝜎𝑛𝑛(𝑟𝑟) 𝑑𝑑𝑠𝑠𝑛𝑛 𝜁𝜁 𝜃𝜃, 𝑛𝑛 𝜎𝜎𝑟𝑟𝜃𝜃 = ∑ 𝜎𝜎𝑟𝑟𝜃𝜃,𝑛𝑛(𝑟𝑟) 𝑐𝑐𝑐𝑐𝑑𝑑 𝜁𝜁 𝜃𝜃 𝑛𝑛 (7) 
 
Introducing equations (6) and (7) into equations (4) and (5), after simplifying for each n we obtained (when 

the body force is zero) 
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𝑑𝑑
𝑑𝑑𝑟𝑟

⎣
⎢
⎢
⎡
𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑟𝑟𝜃𝜃,𝑛𝑛(𝑟𝑟)⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

𝜈𝜈
𝑟𝑟

𝜁𝜁𝜈𝜈
𝑟𝑟

1−𝜈𝜈2

𝐸𝐸
0

− 𝜁𝜁
𝑟𝑟

1
𝑟𝑟

0 2(1+𝜈𝜈)
𝐸𝐸

𝐸𝐸
𝑟𝑟2

− 𝐸𝐸𝜁𝜁
𝑟𝑟2

𝜈𝜈−1
𝑟𝑟

𝜁𝜁
𝑟𝑟

− 𝐸𝐸𝜁𝜁
𝑟𝑟2

𝐸𝐸𝜁𝜁2

𝑟𝑟2
− 𝜁𝜁𝜈𝜈

𝑟𝑟
− 2

𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑟𝑟𝜃𝜃,𝑛𝑛(𝑟𝑟)⎦

⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
0
0

2
𝑟𝑟𝛩𝛩
�𝑎𝑎(0) − (−1)𝑛𝑛𝑎𝑎(𝛩𝛩)�⎦

⎥
⎥
⎤

(𝑛𝑛 ≠ 0) 
            (8) 

𝑑𝑑
𝑑𝑑𝑟𝑟

⎣
⎢
⎢
⎡
𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑟𝑟𝜃𝜃,𝑛𝑛(𝑟𝑟)⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

𝜈𝜈
𝑟𝑟

0 1−𝜈𝜈2

𝐸𝐸
0

0 1
𝑟𝑟

0 2(1+𝜈𝜈)
𝐸𝐸

𝐸𝐸
𝑟𝑟2

0 𝜈𝜈−1
𝑟𝑟

0

0 0 0 −2
𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑛𝑛(𝑟𝑟)
𝜎𝜎𝑟𝑟𝜃𝜃,𝑛𝑛(𝑟𝑟)⎦

⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
0
0

1
𝑟𝑟𝛩𝛩
�𝑎𝑎(0) − 𝑎𝑎(𝛩𝛩)�⎦

⎥
⎥
⎤

(𝑛𝑛 = 0)
                    (8a)   

 
Transforming equation (8) into Hamilton equation. We can take advantage of Hamilton structures to solve it 

once entering Hamilton system. In fact, Hamilton canonical equations have been existed in equation (4) impliedly. 
(see reference, Acta Mechanica Sinica,1998,30(5),580-586,in Chinese) 

 

𝑑𝑑
𝑑𝑑𝑟𝑟

�

𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝛼𝛼𝑛𝑛(𝑟𝑟)
𝛽𝛽𝑛𝑛(𝑟𝑟)

� =
𝑑𝑑
𝑑𝑑𝑟𝑟

⎣
⎢
⎢
⎡
𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝑟𝑟𝜎𝜎𝑛𝑛(𝑟𝑟)
𝑟𝑟𝜎𝜎𝑟𝑟𝜃𝜃,𝑛𝑛(𝑟𝑟)⎦

⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

𝜈𝜈
𝑟𝑟

𝜁𝜁𝜈𝜈
𝑟𝑟

1−𝜈𝜈2

𝐸𝐸⋅𝑟𝑟
0

− 𝜁𝜁
𝑟𝑟

1
𝑟𝑟

0 2(1+𝜈𝜈)
𝐸𝐸⋅𝑟𝑟

𝐸𝐸
𝑟𝑟

− 𝐸𝐸𝜁𝜁
𝑟𝑟

𝜈𝜈
𝑟𝑟

𝜁𝜁
𝑟𝑟

− 𝐸𝐸𝜁𝜁
𝑟𝑟

𝐸𝐸𝜁𝜁2

𝑟𝑟
− 𝜁𝜁𝜈𝜈

𝑟𝑟
− 1

𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝛼𝛼𝑛𝑛(𝑟𝑟)
𝛽𝛽𝑛𝑛(𝑟𝑟)

� +

⎣
⎢
⎢
⎡

0
0
0

2
𝛩𝛩
�𝑎𝑎(0) − (−1)𝑛𝑛𝑎𝑎(𝛩𝛩)�⎦

⎥
⎥
⎤

(𝑛𝑛 ≠ 0)
                         (9) 

𝑑𝑑
𝑑𝑑𝑟𝑟

�

𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝛼𝛼𝑛𝑛(𝑟𝑟)
𝛽𝛽𝑛𝑛(𝑟𝑟)

� =
𝑑𝑑
𝑑𝑑𝑟𝑟

⎣
⎢
⎢
⎡
𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝑟𝑟𝜎𝜎𝑛𝑛(𝑟𝑟)
𝑟𝑟𝜎𝜎𝑟𝑟𝜃𝜃,𝑛𝑛(𝑟𝑟)⎦

⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

𝜈𝜈
𝑟𝑟

0 1−𝜈𝜈2

𝐸𝐸⋅𝑟𝑟
0

0 1
𝑟𝑟

0 2(1+𝜈𝜈)
𝐸𝐸⋅𝑟𝑟

𝐸𝐸
𝑟𝑟

0 𝜈𝜈
𝑟𝑟

0

0 0 0 −1
𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑢𝑢𝑛𝑛(𝑟𝑟)
𝑤𝑤𝑛𝑛(𝑟𝑟)
𝛼𝛼𝑛𝑛(𝑟𝑟)
𝛽𝛽𝑛𝑛(𝑟𝑟)

� +

⎣
⎢
⎢
⎡

0
0
0

1
𝛩𝛩
�𝑎𝑎(0) − 𝑎𝑎(𝛩𝛩)�⎦

⎥
⎥
⎤

(𝑛𝑛 = 0)
                                (9a) 

 
Let us simply equation (9), 
 
𝑑𝑑
𝑑𝑑𝑟𝑟
𝜳𝜳1 = 𝑴𝑴1 ⋅ 𝜳𝜳1 + 𝜦𝜦1                                                                 (10) 

 
in which 

 
𝜳𝜳𝟏𝟏 = [𝑢𝑢𝑛𝑛(𝑟𝑟) 𝑤𝑤𝑛𝑛(𝑟𝑟) 𝛼𝛼𝑛𝑛(𝑟𝑟) 𝛽𝛽𝑛𝑛(𝑟𝑟)]𝑇𝑇,  

𝑴𝑴1 = �
𝑨𝑨1 𝑮𝑮1
𝑩𝑩1 −𝑨𝑨1𝑻𝑻

�, 𝑨𝑨1 = �
− 𝜈𝜈

𝑟𝑟
𝜁𝜁𝜈𝜈
𝑟𝑟

− 𝜁𝜁
𝑟𝑟

1
𝑟𝑟

� , 𝑮𝑮1 = �
1−𝜈𝜈2

𝐸𝐸⋅𝑟𝑟
0

0 2(1+𝜈𝜈)
𝐸𝐸⋅𝑟𝑟

� , 𝑩𝑩1 = �
𝐸𝐸
𝑟𝑟

− 𝐸𝐸𝜁𝜁
𝑟𝑟

− 𝐸𝐸𝜁𝜁
𝑟𝑟

𝐸𝐸𝜁𝜁2

𝑟𝑟

� , −𝑨𝑨1𝑇𝑇 = �
𝜈𝜈
𝑟𝑟

𝜁𝜁
𝑟𝑟

− 𝜁𝜁𝜈𝜈
𝑟𝑟

− 1
𝑟𝑟

�
  

𝜦𝜦1 = �0 0 0
2
𝛩𝛩
�𝑎𝑎(0) − (−1)𝑛𝑛𝑎𝑎(𝛩𝛩)��

𝑇𝑇
(𝑛𝑛 ≠ 0),  𝜦𝜦1 = �0 0 0

1
𝛩𝛩
�𝑎𝑎(0) − 𝑎𝑎(𝛩𝛩)��

𝑇𝑇
 (𝑛𝑛 = 0) 
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𝑴𝑴1in equation (10) is Hamilton matrix. Due to equation (10) is variable-coefficient differential equation, it is 
inconvenient to solve it. We can change it into ordinary differential equation by variable substitution, letting 𝜂𝜂 =
𝑙𝑙𝑛𝑛 𝑟𝑟 , 𝑟𝑟 = 𝑒𝑒𝜂𝜂, one has 

 
𝑑𝑑
𝑑𝑑𝜂𝜂
𝜳𝜳 = 𝑴𝑴 ⋅ 𝜳𝜳 + 𝜦𝜦                                                                     (11) 

 
in which 

 
  𝜳𝜳 = [𝑢𝑢𝑛𝑛(𝜂𝜂) 𝑤𝑤𝑛𝑛(𝜂𝜂) 𝛼𝛼𝑛𝑛(𝜂𝜂) 𝛽𝛽𝑛𝑛(𝜂𝜂)]𝑇𝑇 ,   

𝑴𝑴 = �𝑨𝑨 𝑮𝑮
𝑩𝑩 −𝑨𝑨𝑻𝑻� ,𝑨𝑨 = �−𝜈𝜈 𝜁𝜁𝜈𝜈

−𝜁𝜁 1 � ,  𝑮𝑮 = �
1−𝜈𝜈2

𝐸𝐸
0

0 2(1+𝜈𝜈)
𝐸𝐸

� ,  𝑩𝑩 = �
𝐸𝐸 −𝐸𝐸𝜁𝜁
−𝐸𝐸𝜁𝜁 𝐸𝐸𝜁𝜁2 � , −𝑨𝑨𝑇𝑇 = � 𝜈𝜈 𝜁𝜁

−𝜁𝜁𝜈𝜈 −1�  

𝜦𝜦 = �0 0 0
2𝑒𝑒𝜂𝜂

𝛩𝛩
�𝑎𝑎(0) − (−1)𝑛𝑛𝑎𝑎(𝛩𝛩)��

𝑇𝑇
(𝑛𝑛 ≠ 0),   𝜦𝜦 = �0 0 0

𝑒𝑒𝜂𝜂

𝛩𝛩
�𝑎𝑎(0) − 𝑎𝑎(𝛩𝛩)��

𝑇𝑇
 (𝑛𝑛 = 0) 

 
Thus all terms of Hamilton matrix are constants. 
 

4. Solution 
 
The solution of equation (11) is 
 
𝜳𝜳(𝜂𝜂𝑎𝑎) = 𝑒𝑒𝑒𝑒𝑝𝑝[𝑴𝑴 ⋅ (𝜂𝜂𝑏𝑏 − 𝜂𝜂𝑎𝑎)] 𝜳𝜳(𝜂𝜂𝑏𝑏) + ∫ 𝑒𝑒𝑒𝑒𝑝𝑝[𝑴𝑴 ⋅ (𝜂𝜂 − 𝜏𝜏)] ⋅ 𝜦𝜦(𝜏𝜏)𝜂𝜂𝑎𝑎

𝜂𝜂𝑏𝑏
𝑑𝑑𝜏𝜏                          (12) 

 
In order to calculate the above matrix function, the eigenvalues of the matrix 𝑴𝑴 must be considered. Because 

𝑴𝑴 is Hamilton matrix, its eigenvalues must appear in pairs. 
So far, we still haven’t known that distribution of unknown coefficients along r direction, in order to solve it, 

we may divide longitudinal thick into some minor thin plies, for example m thin plies. Of course, we have reason 
to think unknown coefficient within each minor thin ply is constant. If we find, from calculation, that the needful 
effective digits hardly change, it can be said that the results obtained with some minor thin plies are exact within 
the prescribed accuracy limits. After programming, one has 

 
𝜳𝜳(𝜂𝜂𝑎𝑎) = 𝑪𝑪 ⋅ 𝜳𝜳(𝜂𝜂𝑏𝑏) + 𝑫𝑫 ⋅ 𝜦𝜦                                                              (13) 
 
where 𝑫𝑫 is a matrix of 4 × 𝑚𝑚, and 𝜦𝜦 is a contains unknown coefficients matrix of 𝑚𝑚 × 1. Usually, the loads 

on the inner and outer surface of sector domain are given a priori. We can obtain below equation from equation 
(13) 

 

�𝛼𝛼(𝜂𝜂𝑎𝑎)
𝛽𝛽(𝜂𝜂𝑎𝑎)� = �𝐶𝐶

31 𝐶𝐶32
𝐶𝐶41 𝐶𝐶42

� ⋅ �𝑢𝑢(𝜂𝜂𝑏𝑏)
𝑤𝑤(𝜂𝜂𝑏𝑏)� + �𝐶𝐶

33 𝐶𝐶34
𝐶𝐶43 𝐶𝐶44

� ⋅ �𝛼𝛼(𝜂𝜂𝑏𝑏)
𝛽𝛽(𝜂𝜂𝑏𝑏)� + �𝐷𝐷

(3)

𝐷𝐷(4)� ⋅ 𝜦𝜦 

�𝑢𝑢(𝜂𝜂𝑏𝑏)
𝑤𝑤(𝜂𝜂𝑏𝑏)� = �𝐶𝐶

31 𝐶𝐶32
𝐶𝐶41 𝐶𝐶42

�
−1
⋅ ��𝛼𝛼(𝜂𝜂𝑎𝑎)

𝛽𝛽(𝜂𝜂𝑎𝑎)� − �𝐶𝐶
33 𝐶𝐶34

𝐶𝐶43 𝐶𝐶44
� ⋅ �𝛼𝛼(𝜂𝜂𝑏𝑏)

𝛽𝛽(𝜂𝜂𝑏𝑏)� − �𝐷𝐷
(3)

𝐷𝐷(4)� ⋅ 𝜦𝜦� 
 
Extending above the second equation, therefore one has 
 
𝜳𝜳(𝜂𝜂𝑏𝑏) = 𝑪𝑪𝟏𝟏 + 𝑫𝑫𝟏𝟏 ⋅ 𝜦𝜦                                                                   (14) 
 

in which 𝑪𝑪𝟏𝟏,𝑫𝑫𝟏𝟏 are given by 𝑪𝑪 and 𝑫𝑫. 
Substituting equation (14) into equation (13),  
 
𝜳𝜳(𝜂𝜂𝑎𝑎) = 𝑪𝑪 ⋅ 𝑪𝑪𝟏𝟏 + (𝑪𝑪 ⋅ 𝑫𝑫1 + 𝑫𝑫) ⋅ 𝜦𝜦                                                        (15) 
 

for any 𝜂𝜂 one has 
 
𝜳𝜳(𝜂𝜂) = 𝑪𝑪𝜂𝜂 ⋅ 𝑪𝑪𝟏𝟏 + (𝑪𝑪𝜂𝜂 ⋅ 𝑫𝑫1 + 𝑫𝑫𝜂𝜂) ⋅ 𝜦𝜦                                                      (16) 
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where 𝑪𝑪𝜂𝜂 and 𝑫𝑫𝜂𝜂 can be calculated through matrix function of equation (12). From equation (16), there are 
only unknown quantities left here, they can be got by means of satisfying boundary condition (the present 
approach). In addition, owing to each mechanics quantity is expressed by 𝜦𝜦, they can also be calculated by fractal 
finite element method. By restoring variable substitution, from equation (16), and has 

 

�
𝜎𝜎𝑟𝑟
𝜎𝜎𝑟𝑟𝜃𝜃� = 1

𝑟𝑟
�𝛹𝛹

(3)(𝜂𝜂)
𝛹𝛹(4)(𝜂𝜂)

�                                                                   (17) 
 

where 𝛹𝛹(3)(𝜂𝜂) and 𝛹𝛹(4)(𝜂𝜂) come from the third and fourth row of equation (16). We know stresses have 
singularity when 𝑟𝑟 → 0 from equations (17). 

According to knowledge of fractal finite element method, within the singular region, one can use fractal two-
level finite element method to solve unknown coefficient. The second level interpolation of displacements for the 
first layer of fractal mesh can be written as follows 

 

�
𝒗𝒗𝒎𝒎
𝒗𝒗𝒔𝒔 � = �

𝑰𝑰 𝟎𝟎
𝟎𝟎 𝑻𝑻𝑠𝑠

𝑓𝑓� �
𝒗𝒗𝑚𝑚
𝜦𝜦 �                                                                 (18) 

 
where 𝒗𝒗𝒓𝒓,𝒗𝒗𝑚𝑚 are the displacements in the regular region and on the boundary respectively. I is the identity matrix, 
𝑻𝑻𝑠𝑠
𝑓𝑓  is the transformation matrix that can be evaluated by using equations (7) and (15). Applying the fractal 

transformation technique (18), the global stiffness matrix becomes 
 

�
𝑲𝑲𝒓𝒓𝒓𝒓 𝑲𝑲𝒓𝒓𝒎𝒎

𝑲𝑲𝒎𝒎𝒓𝒓 𝑲𝑲𝒎𝒎𝒎𝒎 + 𝑲𝑲𝟏𝟏𝟏𝟏
𝟏𝟏 𝑲𝑲𝟏𝟏𝟐𝟐

𝟏𝟏 𝑻𝑻𝟏𝟏
𝑲𝑲𝟐𝟐𝟏𝟏
𝟏𝟏 𝑻𝑻𝟏𝟏 𝑲𝑲𝒔𝒔𝒔𝒔

� �
𝒗𝒗𝒓𝒓
𝒗𝒗𝒎𝒎
𝜦𝜦
�
                                                      (19) 

 
From equation (19), after the transformation, the order of equation (19) becomes much smaller than that of 

equation (18). When unknown coefficient is obtained, this problem is achieved. 
 

5. Conclusion 
 

Weak formulations of mixed state equations are presented in Hamilton System. This work is concerned with 
the weak formulation of mixed equation of elasticity and the fractal finite element methods. By means of the weak 
formulation, some analytical solutions expression can be obtained. The fractal finite element method is used to 
analyze the sectorial domain problem. The present study satisfies the continuity conditions of stresses and 
displacements at the interfaces. Solutions and method such as this have value for designing laminated composite 
structures in naval, aerospace and other engineering applications. 
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