Assessment of Rutting Resistance and Healing for Stone Matrix Asphalt Concrete (SMAC)

  • Saad Issa Sarsam
  • Shahed Mahmood Khalil
Keywords: Stone matrix asphalt; Deformation; Rutting; Resilient Modulus; Healing.

Abstract

Stone Matrix Asphalt Concrete (SMAC) is known as tough, stable, rut-resistant mixture. In this investigation, SMAC was prepared in the laboratory using gap graded aggregates, asphalt cement, mineral filler and coal fly ash as stabilizing agent. Specimens were prepared using static compaction to the target density based on asphalt content for each case. The prepared Specimens were subjected to the 1200 repeated compressive stresses at 25 ºC under various stress levels using the pneumatic repeated load system PRLS. Specimens were subjected to microcrack healing process by external heating for 120 minutes at 60 °C, then it practices another cycle of repeated compressive stresses. The resilient modulus, permanent deformation, and rutting resistance under three levels of stress have been assessed. It was concluded that the resilient modulus Mr increases by (66, 50 and 31) %, (36, 50 and 31) % and (62, 37 and 69) %, while the permanent deformation decreases by (25, 11.4 and 25) %, (19, 31.6 and 14.5) % and (14, 9 and 8.3) % after implementation of fly ash at (OAC-0.5, OAC and OAC+0.5) % binder content under (0.068, 0.138 and 0.206) MPa of repeated compressive stress respectively. The resilient modulus increased by (17.6, 15.3, 10.5) % , (42.8, 51, 37.5) % and (18.7, 25, 23.6) %  and the permanent deformation decline by (3.52, 31.66, 6.25) % under repeated compressive stresses of (0.068, 0.138, 0.206) MPa at (25 °C) after healing for mix with (4.6, 5.1, 5.6) % asphalt content  respectively when compared with mixtures before healing.

Published
2019-12-15
Section
Articles