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Abstract: In the present paper, an equivalent Three Degree of Freedom (DoF) system of a bi-hinge beam, which 
has infinity number of degree of freedoms because possesses distributed mass and stiffness along its length, is 
presented. Based on the vibration partial differential equation of the abovementioned bi-hinge beam, an equivalent, 
mathematically, three-degree of freedom system, where the equivalent mass matrix is analytically formulated with 
reference on specific mass locations. Using the Three DoF model, the first three fundamental mode-shapes of the 
real beam can be identified. Furthermore, taking account the 3x3 mass matrix, it is possible to estimate the possible 
beam damages using a known technique of identification mode-shapes via records of response accelerations. 
Moreover, the way of instrumentation with a local network by three accelerometers is shown. It is worth noting 
this technique can be applied on bridges consist of bays with two hinges at its end sections, supported on 
elastometallic bearings, where the sense of concentrated mass is fully absent from the beam.  
Keywords: Identification of mode-shapes; Distributed mass and stiffness; Continuous system.   

 
 
1. Introduction 
 

An ideal three Degree of Freedom system that is equivalent with the modal behavior of an infinity number of 
degree of freedom of a bi-hinges beam is presented by the present article. This equivalent three DoF system can 
be used in instrumentation of such beams, where the concept of the concentrated masses is not existing, with a 
local network of three accelerometers. This issue is a main problem that is appear very common during the 
instrumentation of bi-hinges bridge beams or steel stairs [1-3] or wind energy power [4-5] in order to identify the 
real vibration mode shapes of the structure via records of response accelerograms at specific positions due to 
ambient excitation [6-7]. 

 
2. Modal analysis of undamped bi-hinge beam with distributed mass and stiffness 
 

According to the Theory of Continuous Systems [8-9], consider a straight beam that is loaded by an external 
continuous dynamic loading 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡), with reference to a Cartesian three-dimensional reference system oxyz, 
(Figure 1). This beam possesses a distributed mass per unit length  𝑚𝑚(𝑥𝑥), which in the special case of uniform 
distribution is given as 𝑚𝑚(𝑥𝑥) = 𝑚𝑚�  in tons per meter (tn/m). Moreover, this beam has section flexural stiffness 
𝛦𝛦𝛦𝛦𝑦𝑦(𝑥𝑥), where in the special  case of an uniform distribution of the stiffness it is given as 𝛦𝛦𝛦𝛦𝑦𝑦(𝑥𝑥) = 𝛦𝛦𝛦𝛦𝑦𝑦  , where E 
is the material modulus of elasticity and 𝛪𝛪𝑦𝑦  is the section moment of inertia about y-axis. Next. We are examining 
a such bi-hinges beam that possesses constant value of distributed mass along its length, as well as constant value 
of distributed section flexural stiffness 𝛦𝛦𝛦𝛦𝑦𝑦 . Due to fact that the beam mass is continuously distributed, this beam 
has infinity number of degrees of freedom for vibration along the vertical oz-axis. For the formulate of the motion 
equation of this beam, we consider an infinitesimal part of the beam, at location x from the origin o, that has 
isolated by two very nearest parallel sections. The infinitesimal length of this part is the l𝑑𝑑𝑑𝑑. On this infinitesimal 
length, we notice the flexural moment 𝑀𝑀(𝑥𝑥, 𝑡𝑡), the shear force 𝑄𝑄(𝑥𝑥, 𝑡𝑡) with their differential increments, while the 
axial force  𝛮𝛮(𝑥𝑥, 𝑡𝑡) is ignored, because it doesn’t affect the vertical beam vibration along z-axis. Moreover, noted 
the resulting force 𝑃𝑃𝑧𝑧(𝑥𝑥, 𝑡𝑡) of the external dynamic loading. Therefore, we can write: 

 
𝑃𝑃𝑧𝑧(𝑥𝑥, 𝑡𝑡) = 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑                                                                                                                                                   (1)    

 
where the resulting force 𝑃𝑃𝑧𝑧(𝑥𝑥, 𝑡𝑡) acts at the total beam infinitesimal part. 
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Furthermore, according to D’Alembert Principle, the resulting inertia force 𝐹𝐹𝑎𝑎(𝑥𝑥, 𝑡𝑡) is noted, where: 
 
𝐹𝐹𝑎𝑎(𝑥𝑥, 𝑡𝑡) = (−𝑚𝑚� ∙ 𝑑𝑑𝑑𝑑) ∙ 𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡) 𝜕𝜕𝑡𝑡2⁄       ⇒     𝐹𝐹𝑎𝑎(𝑥𝑥, 𝑡𝑡) = (−𝑚𝑚� ∙ 𝑑𝑑𝑑𝑑) ∙ 𝑢̈𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡)                                              (2) 

 

 
Figure 1. Bi-hinges beam with distributed mass and section flexural stiffness 

 
Here we agree that the time derivatives of the displacements are going to symbolize with full stops, while the 

spatial derivatives of the displacements are going to symbolize with accent. Next, the damping and the second 
order differential are ignored, so the force equilibrium on the infinitesimal part of the beam along z-axis gives: 

 
∑𝐹𝐹𝑧𝑧 = 0       ⇒     𝑄𝑄 + 𝑃𝑃𝑧𝑧(𝑥𝑥, 𝑡𝑡) − �𝑄𝑄 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� + 𝐹𝐹𝑎𝑎(𝑥𝑥, 𝑡𝑡) = 0     ⇒   

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡) −𝑚𝑚� ∙ 𝑢̈𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡)                                                                                                                                         (3) 
 
Moreover, the moment equilibrium with reference to centre of weight of the infinitesimal part of the beam (see 

Figure 1) gives: 
 
∑𝑀𝑀𝑦𝑦 = 0    ⇒   𝑀𝑀 + 𝑄𝑄 ∙ 𝑑𝑑𝑑𝑑

2
+ �𝑄𝑄 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� ∙ 𝑑𝑑𝑑𝑑

2
− �𝑀𝑀 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� = 0   ⇒     𝑄𝑄 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                                          (4) 

 
According to Euler-Bernoulli Bending Theory (where the shear deformations are ignored) it is well-known that 

the following basic equation is true: 
 
𝑀𝑀(𝑥𝑥, 𝑡𝑡) = 𝛦𝛦𝛦𝛦𝑦𝑦 ∙

𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

                                                                                                                                                 (5) 
 
Equation (4) and (5) are inserting into equation (3), so the motion equation without damping for the examined 

beam is given: 
 
𝜕𝜕2𝑀𝑀
𝜕𝜕𝑥𝑥2

= 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡) −𝑚𝑚� ∙ 𝑢̈𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡)   ⇒    𝜕𝜕
2

𝜕𝜕𝑥𝑥2
�𝛦𝛦𝛦𝛦𝑦𝑦 ∙

𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� = 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡) −𝑚𝑚� ∙ 𝑢̈𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡)                      ⇒  

𝑚𝑚� 𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝛦𝛦𝛦𝛦𝑦𝑦
𝜕𝜕4𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥4
= 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡)  ⇒  𝑚𝑚� ∙ 𝑢̈𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡) + 𝛦𝛦𝛦𝛦𝑦𝑦 ∙ 𝑢𝑢𝑧𝑧′′′′(𝑥𝑥, 𝑡𝑡) = 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡)                                              (6) 

 
Equation (6) is a partial differential equation that describes the motion 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡) of the beam that is loaded with 

the external dynamic loading  𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡). In order to arise a unique solution from Eq.(6), the support conditions must 
be used at the two beam ends. It is worthy to note that the classical case of a beam with distributed mass and 
section flexural stiffness, under external vertical excitation (Figure 2) on the two supports is mathematically 
equivalent with the vibration that is described by equation (6). 

Indeed, in the case of the Figure (2), the total displacement 𝑢𝑢𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑡𝑡) of the beam at x-location is given: 
 
 𝑢𝑢𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢𝑔𝑔(𝑡𝑡) + 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡)                                                                                                                                        (7) 
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where 𝑢𝑢𝑔𝑔(𝑡𝑡)  is the displacement at the base, same for the two supports. 
But, it is known that the inertia forces of the beam are depended by the total displacement  𝑢𝑢𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑡𝑡), while the 

distributed dynamic loading is null, 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡) = 0. Thus, the equation (3) is transformed into: 
  

 
Figure 2. Beam subjected at the same vertical ground motion 𝑢𝑢g(𝑡𝑡) on the supports 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡) −𝑚𝑚� ∙ 𝜕𝜕
2𝑢𝑢𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 0 −𝑚𝑚� ∙  𝜕𝜕
2𝑢𝑢𝑔𝑔(𝑡𝑡)

𝜕𝜕𝑡𝑡2
 −𝑚𝑚� ∙  𝜕𝜕

2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

                                                                            (8) 
 
Following, equations (4-5) are inserting into equation (8), thus we are taken: 
 
𝜕𝜕2𝑀𝑀
𝜕𝜕𝑥𝑥2

= −𝑚𝑚� ∙  �𝜕𝜕
2𝑢𝑢𝑔𝑔(𝑡𝑡)

𝜕𝜕𝑡𝑡2
+ 𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑡𝑡2
�             ⇒        𝑚𝑚� 𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑡𝑡2
+ 𝛦𝛦𝛦𝛦𝑦𝑦

𝜕𝜕4𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

= −𝑚𝑚� ∙  𝜕𝜕
2𝑢𝑢𝑔𝑔(𝑡𝑡)

𝜕𝜕𝑡𝑡2
                                 (9) 

 
By the comparison of the two equations (6) and (9), we notice that the undamped beam vibration due to vertical 

motion of the two supports is mathematically equivalent with the undamped vibration of the same beam where the 
two supports are fixed and the beam is loaded with the equivalent distributed dynamic loading 𝑝𝑝𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡): 

 
𝑝𝑝𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) = −𝑚𝑚� ∙  𝜕𝜕

2𝑢𝑢𝑔𝑔(𝑡𝑡)

𝜕𝜕𝑡𝑡2
                                                                                                                                              (10) 

 
In the case of the beam free vibration without damping, we consider the first part of equation (9) that must be 

null: 
 
𝑚𝑚� 𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑡𝑡2
+ 𝛦𝛦𝛦𝛦𝑦𝑦

𝜕𝜕4𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

= 0                                                                                                                                    (11) 
 
Furthermore, we ask the unknown spatial-time function 𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡), which is the solution of equation (11), must 

has the form of separated variants: 
 
𝑢𝑢𝑧𝑧(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥) ∙ 𝑞𝑞(𝑡𝑡)                                                                                                                                                 (12) 
 

where 𝜑𝜑(𝑥𝑥) is an unknown spatial function and the 𝑞𝑞(𝑡𝑡) is an unknown time-function. 
Equation (12) has been derived two times with reference to time-dimension t and more two times with reference 

to spatial-dimension x, so: 
 
𝜕𝜕2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑡𝑡2
= 𝜑𝜑(𝑥𝑥) ∙ 𝑞̈𝑞(𝑡𝑡)   ,     𝜕𝜕

2𝑢𝑢𝑧𝑧(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

= 𝜑𝜑′′(𝑥𝑥) ∙ 𝑞𝑞(𝑡𝑡)                                                                                              (13) 
 
Equations (13) are inserting into equation (11), giving: 
 
𝑚𝑚� ∙ 𝜑𝜑(𝑥𝑥) ∙ 𝑞̈𝑞(𝑡𝑡) + 𝛦𝛦𝛦𝛦𝑦𝑦 ∙ 𝜑𝜑′′′′(𝑥𝑥) ∙ 𝑞𝑞(𝑡𝑡) = 0  

 
and, next, divided with the numder 𝑚𝑚� ∙ 𝜑𝜑(𝑥𝑥) ∙ 𝑞𝑞(𝑡𝑡), thus we are getting:  
 

−𝑞̈𝑞(𝑡𝑡)
𝑞𝑞(𝑡𝑡)

= 𝛦𝛦𝛦𝛦𝑦𝑦∙𝜑𝜑′′′′(𝑥𝑥)

𝑚𝑚�∙𝜑𝜑(𝑥𝑥)
                                                                                                                                                           (14) 

 
The left part of equation (14) is a time-function, but the right part is a spatial-function. In order to true equation 

(14) for all time values as well as for all spatial positions, the two parts of equation (14) must be equal with a 
constant 𝜆𝜆. Thus, equation (14) is separated at two following differential equations: 
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−𝑞̈𝑞(𝑡𝑡)
𝑞𝑞(𝑡𝑡)

= 𝜆𝜆    ⇒      𝑞̈𝑞(𝑡𝑡) + 𝜆𝜆 ∙  𝑞𝑞(𝑡𝑡) = 0                                                                                                                       (15) 

𝛦𝛦𝛦𝛦𝑦𝑦∙𝜑𝜑′′′′(𝑥𝑥)

𝑚𝑚�∙𝜑𝜑(𝑥𝑥)
= 𝜆𝜆      ⇒      𝛦𝛦𝛦𝛦𝑦𝑦 ∙ 𝜑𝜑′′′′(𝑥𝑥) − 𝜆𝜆 ∙  𝑚𝑚� ∙ 𝜑𝜑(𝑥𝑥) = 0                                                                                      (16) 

 
However, the time equation (15) indicates a free vibration of an ideal single degree of freedom system that has 

eigen-frequency 𝜔𝜔 = √𝜆𝜆 . Inserting the eigen-frequensy 𝜔𝜔 into equation (16) arise: 
 
𝛦𝛦𝛦𝛦𝑦𝑦 ∙ 𝜑𝜑′′′′ (𝑥𝑥) − 𝜔𝜔2 ∙  𝑚𝑚� ∙ 𝜑𝜑(𝑥𝑥) = 0      ⇒       𝜑𝜑′′′′(𝑥𝑥) − 𝜔𝜔2∙ 𝑚𝑚�

𝛦𝛦𝛦𝛦𝑦𝑦
∙ 𝜑𝜑(𝑥𝑥) = 0                                                         (17) 

 
Next, we set the positive parameter 𝛽𝛽 such as to be equal: 
 
𝛽𝛽4 = 𝜔𝜔2∙ 𝑚𝑚�

𝛦𝛦𝛦𝛦𝑦𝑦
  

 
because the parameters 𝜔𝜔2,𝑚𝑚�  ,𝛦𝛦𝛦𝛦𝑦𝑦  are always positive. By the mathematic theory it is known that the general 
solution of equation (17) has the following form: 
 
𝜑𝜑(𝑥𝑥) = 𝐶𝐶1 sin𝛽𝛽𝑥𝑥 + 𝐶𝐶2 cos𝛽𝛽𝑥𝑥 + 𝐶𝐶3 sinh𝛽𝛽𝑥𝑥 + 𝐶𝐶4 cosh𝛽𝛽𝑥𝑥                                                                                    (18) 

 
where the four unknown parameters 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4  must be calculated. In order to achieve this, four support 
conditions of the beam have to used. Indeed, for 𝑥𝑥 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝐿𝐿 the displacement 𝑢𝑢𝑧𝑧(0, 𝑡𝑡) of the bi-hinge beam 
as well as the flexural moment 𝑀𝑀(0, 𝑡𝑡), both are equal zero. The spatial function 𝜑𝜑(𝑥𝑥), which is the solution of 
equation (18) gives the modal elastic line of the beam. Having as known data that the following equation is true: 
 

sinh𝛽𝛽𝑥𝑥 = 𝑒𝑒𝛽𝛽𝑥𝑥−𝑒𝑒−𝛽𝛽𝑥𝑥

2
 ,    cosh𝛽𝛽𝑥𝑥 = 𝑒𝑒𝛽𝛽𝑥𝑥+𝑒𝑒−𝛽𝛽𝑥𝑥

2
  

 
The spatial function of the modal elastic line for 𝑥𝑥 = 0 is: 
 
𝜑𝜑(0) = 𝐶𝐶1 sin 0 + 𝐶𝐶2 cos 0 + 𝐶𝐶3 sinh 0 + 𝐶𝐶4 cosh 0 = 0   ⇒    𝐶𝐶2 + 𝐶𝐶4 = 0                                                    (19) 

 
and also for 𝑥𝑥 = 0, the function of the flexural moment due to examined modal elastic line of the beam is given 
by equation (5): 
 

 𝑀𝑀(0, 𝑡𝑡) = 𝛦𝛦𝛪𝛪𝑦𝑦 ∙
𝜕𝜕2𝜑𝜑(0)
𝜕𝜕𝑥𝑥2

= 0      ⇒    𝛦𝛦𝛦𝛦𝑦𝑦 ∙ 𝜑𝜑′′(0) = 0                                                                                            (20) 
 
Equation (18) has been derived two times with reference to spatial-dimension x, thus arise: 
 
𝜑𝜑′ (𝑥𝑥) = 𝐶𝐶1 ∙ 𝛽𝛽 ∙ cos𝛽𝛽𝑥𝑥 + 𝐶𝐶2 ∙ (−𝛽𝛽) ∙ sin𝛽𝛽𝑥𝑥 + 𝐶𝐶3 ∙ 𝛽𝛽 ∙ cosh𝛽𝛽𝑥𝑥 + 𝐶𝐶4 ∙ 𝛽𝛽 ∙ sinh 𝛽𝛽𝑥𝑥                                            (21) 

 
And 
 
𝜑𝜑′′(𝑥𝑥) = 𝐶𝐶1(−𝛽𝛽2) ∙ sin𝛽𝛽𝑥𝑥 + 𝐶𝐶2(−𝛽𝛽2) ∙ cos𝛽𝛽𝑥𝑥 + 𝐶𝐶3𝛽𝛽2 ∙ sinh 𝛽𝛽𝑥𝑥 + 𝐶𝐶4𝛽𝛽2 ∙ cosh𝛽𝛽𝑥𝑥                                         (22) 
 
Therefore, equation (20) is transformed: 
 
𝛦𝛦𝛦𝛦𝑦𝑦 ∙ 𝛽𝛽2 ∙ (𝐶𝐶4 − 𝐶𝐶2) = 0                                                                                                              (23) 
 
By equations (19) and (23) directly arise 𝐶𝐶2 = 0 and 𝐶𝐶4 = 0 , thus the general solution of equation (18) is the 

following:  
 
𝜑𝜑(𝑥𝑥) = 𝐶𝐶1 sin𝛽𝛽𝑥𝑥 + 𝐶𝐶3 sinh 𝛽𝛽𝑥𝑥                                                                                                                                 (24) 
 
In addition, the parameters 𝐶𝐶1,𝐶𝐶3 are calculated by the support conditions of the second support of the beam. 

Therefore, for 𝑥𝑥 = 𝐿𝐿 the vertical displacement 𝑢𝑢(𝐿𝐿, 𝑡𝑡) = 0 be true. Thus, from equation (12) arise that 𝜑𝜑(𝐿𝐿) = 0 
and equation (24) gives: 
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𝜑𝜑(𝐿𝐿) = 𝐶𝐶1 sin𝛽𝛽𝐿𝐿 + 𝐶𝐶3 sinh𝛽𝛽𝐿𝐿 = 0                                                                                       (25) 
 
In continuous, equation (20) gives: 
 
𝑀𝑀(𝐿𝐿, 𝑡𝑡) = 𝛦𝛦𝛦𝛦𝑦𝑦 ∙

𝜕𝜕2𝜑𝜑(𝐿𝐿)
𝜕𝜕𝑥𝑥2

= 0      ⇒    𝛦𝛦𝛦𝛦𝑦𝑦 ∙ 𝜑𝜑′′(𝐿𝐿) = 0                                                                    (26) 
 
where 𝜑𝜑′′(𝐿𝐿) is directly getting from equation (22) that is equivalent with zero: 
 
𝜑𝜑′′(𝐿𝐿) = 𝐶𝐶1(−𝛽𝛽2) ∙ sin𝛽𝛽𝐿𝐿 + 𝐶𝐶3𝛽𝛽2 ∙ sinh𝛽𝛽𝐿𝐿 = 0                                                                                   (27) 
 
However, re-written again equations (25) and (27), we are getting: 
 
𝐶𝐶1 ∙ sin𝛽𝛽𝐿𝐿 + 𝐶𝐶3 ∙ sinh 𝛽𝛽𝐿𝐿 = 0  

−𝐶𝐶1 ∙ sin𝛽𝛽𝐿𝐿 + 𝐶𝐶3 ∙ sinh𝛽𝛽𝐿𝐿 = 0  
 
And added part to part these two above-mentioned equations arise: 
 
2 ∙ 𝐶𝐶3 ∙ sinh𝛽𝛽𝐿𝐿 = 0                                                                                                                        (28) 
 
But, the term 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝛽𝛽𝛽𝛽 is not equal with zero, because then vibration is not existing. Therefore, 𝐶𝐶3 has to equal 

with zero, so equation (25) is formed: 
 
𝜑𝜑(𝐿𝐿) = 𝐶𝐶1 ∙ sin𝛽𝛽𝐿𝐿 = 0                                                                                                                  (29) 
 
Moreover, by equation (29) arise that either 𝐶𝐶1 = 0 that is impossibility because 𝜑𝜑(𝑥𝑥) ≠ 0 by equation (24), 

either 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 = 0 that means the following equation must be true: 
 
𝛽𝛽𝛽𝛽 = 𝑛𝑛 ∙ 𝜋𝜋                𝑛𝑛 = 1,2,3, …                                                                                            (30) 
 

 
Figure 3. The four first mode-shapes of the beam with distributed mass and section flexural stiffness 

 
However, equation (30) is transformed to equation (31): 
 
𝛽𝛽𝐿𝐿 = 𝑛𝑛 ∙ 𝜋𝜋      ⇒   𝛽𝛽2𝐿𝐿2 = 𝑛𝑛2 ∙ 𝜋𝜋2    ⇒     𝛽𝛽2 = 𝑛𝑛2∙𝜋𝜋2

𝐿𝐿2
                                                                                (31) 

 
By the definition of parameter 𝛽𝛽 , we can calculate the eigen-frequency 𝜔𝜔: 
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𝛽𝛽4 = 𝜔𝜔2∙ 𝑚𝑚�
𝛦𝛦𝛦𝛦𝑦𝑦

      ⇒        𝜔𝜔2 = 𝛦𝛦𝛦𝛦𝑦𝑦∙𝛽𝛽4

𝑚𝑚�
      ⇒        𝜔𝜔 = 𝛽𝛽2 ∙ �𝛦𝛦𝛪𝛪𝑦𝑦

𝑚𝑚�
                                                         (32) 

 
Thus, inserting equation (31) into equation (32), the eigen-frequency 𝜔𝜔𝑛𝑛 is directly arise for each n-value. 
 

𝜔𝜔𝑛𝑛 = 𝑛𝑛2∙𝜋𝜋2

𝐿𝐿2
∙ �𝛦𝛦𝛦𝛦𝑦𝑦

𝑚𝑚�
               𝑛𝑛 = 1,2,3, …                                                                                 (33) 

 
Therefore, the vibration mode-shape of the examined beam arises by equation (24) -since previous inserting 

equation (30)- thus: 
 
𝜑𝜑𝑛𝑛(𝑥𝑥) = 𝐶𝐶1 sin𝛽𝛽𝑥𝑥 =  𝐶𝐶1 sin 𝑛𝑛∙𝜋𝜋∙𝑥𝑥

𝐿𝐿
             𝑛𝑛 = 1,2,3, …                                                        (34) 

 
The value of  𝐶𝐶1 is arbitrary, and we usually get it equal to unit. Thus, for each value of parameter n, a mode-

shape with its eigen-frequency are resulted. The fundamental (first) mode-shape is resulted for 𝑛𝑛 = 1, which shows 
a half sinusoidal wave, the second mode-shape shows a foul sinusoidal wave, etc. (Figure3). The order of the 
eigen-frequencies are 𝜔𝜔1,  𝜔𝜔2 = 4𝜔𝜔1,   𝜔𝜔3 = 9𝜔𝜔1,  𝜔𝜔4 = 16𝜔𝜔1  etc.  

 
3. The equivalent three degrees of freedom beam 
 

At beams where the fundamental mode-shape does not activate the 90% of the total beam mass, we ask to 
consider the three first mode-shapes. Thus, for this purpose, we must define an ideal equivalent three degrees of 
freedom beam, which is going to give the three mode-shapes of the examined beam. Therefore, which is the ideal 
three degrees of freedom system, where its three mode-shapes coincide with the real first three mode-shapes of 
the beam with distributed mass and flexural stiffness? 

In order to answer the above-mentioned question, consider a weightless beam with length L and constant section 
along its length, where carry three concentrated masses that each one has the same mass-value 𝑚𝑚𝑒𝑒𝑒𝑒  , located per 
distance 0.25L, between one to one, and each one mass possesses a vertical degree of freedom (Fig.4). 

 

 
Figure 4. The equivalent three-degree of freedom beam 

 
The beam displacement vector u of the three degrees of freedom, as well as the diagonal  beam mass matrix 𝒎𝒎 

are written: 
 

𝐮𝐮 = �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�  ,          𝐦𝐦 = �

𝑚𝑚eq 0 0
0 𝑚𝑚eq 0
0 0 𝑚𝑚eq

�                                                                                                   (35) 
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Furthermore, the beam flexibility matrix 𝒇𝒇 can be calculated using a suitable method (Figure4), and the inverse 
matrix gives the stiffness matrix 𝒌𝒌  of the three degrees of freedom beam. 

 

𝒇𝒇 = �
𝛿𝛿1,1 𝛿𝛿1,2 𝛿𝛿1,3
𝛿𝛿2,1 𝛿𝛿2,2 𝛿𝛿2,3
𝛿𝛿3,1 𝛿𝛿3,2 𝛿𝛿3,3

� = 𝐿𝐿3

48𝐸𝐸𝐸𝐸𝑦𝑦
∙ �

1 0.6875 0.6875
0.6875 0.5625 0.4375
0.6875 0.4375 0.5625

�                                                                 (36) 

𝒌𝒌 = �
𝑘𝑘1,1 𝑘𝑘1,2 𝑘𝑘1,3
𝑘𝑘2,1 𝑘𝑘2,2 𝑘𝑘2,3
𝑘𝑘3,1 𝑘𝑘3,2 𝑘𝑘3,3

� = 48𝐸𝐸𝐸𝐸𝑦𝑦
𝐿𝐿3

∙ �
18.285714 −12.571429 −12.571429
−12.571429 13.142857 5.142857
−12.571429 5.142857 13.142857

�                              (37) 

 
The equations of motion for the case of the free undamped vibration of the ideal beam is given: 
 
𝐦𝐦 𝐮̈𝐮(𝑡𝑡) + 𝐤𝐤 𝐮𝐮(𝑡𝑡) = 𝟎𝟎                                                                                                               (38) 
 
The eigen-problem is written: 
 
(𝐤𝐤 − 𝝎𝝎𝑛𝑛

2𝐦𝐦)𝛗𝛗𝑛𝑛 = 𝟎𝟎            𝑛𝑛 = 1, 2, 3.                                                                                     (39) 
 
where, the eigen-frequencies 𝝎𝝎𝒏𝒏  and the three mode-shapes 𝝋𝝋𝒏𝒏 are known by equation (33-34) and Figure 4. 
Therefore, the unique unknown parameter is the mass 𝑚𝑚𝑒𝑒𝑒𝑒 . Thus, 
 

det(𝐤𝐤 −𝝎𝝎1
2𝐦𝐦) = 0                          ⇒                                                                               (40) 

 𝑚𝑚eq
3 + 𝛢𝛢 ∙ 𝑚𝑚eq

2 + 𝛣𝛣 ∙ meq + 𝐶𝐶 = 0                                                                                                   (41) 
 
where, 
 
𝐴𝐴 = −𝑘𝑘11+𝑘𝑘22+𝑘𝑘33

𝜔𝜔1
2  ,             𝐵𝐵 = 𝑘𝑘11𝑘𝑘33+𝑘𝑘11𝑘𝑘22+𝑘𝑘22𝑘𝑘33−𝑘𝑘12

2 −𝑘𝑘13
2 −𝑘𝑘23

2

𝜔𝜔1
4   

𝐶𝐶 = −𝑘𝑘11𝑘𝑘22𝑘𝑘33+2𝑘𝑘12𝑘𝑘13𝑘𝑘23−𝑘𝑘11𝑘𝑘23
2 −𝑘𝑘22𝑘𝑘13

2 −𝑘𝑘33𝑘𝑘12
2

𝜔𝜔1
6   

 
The numerical solution of equation (41) gives three roots for parameter 𝑚𝑚𝑒𝑒𝑒𝑒 , where only the first root is 

acceptable, because the other two values rejected since do not have natural meaning (appear values greater from 
the total beam mass 𝑚𝑚�𝐿𝐿). Thus, the only one acceptable root is given: 

 
𝑚𝑚𝑒𝑒𝑒𝑒 = 0.24984748 ∙ (𝑚𝑚�𝐿𝐿)                                                                                                      (42) 
 
Therefore, inserting the ideal equivalent mass 𝑚𝑚𝑒𝑒𝑒𝑒  by equation (42) at three degrees of freedom system of 

Figure 4, the three eigen-frequencies and mode-shapes coincide with the real values of the initial beam that has 
distributed mass and flexural stiffness. 

 
4. Conclusions 
 

The present article has presented a mathematic ideal three degrees of freedom system that is equivalent with 
the modal behavior of the bi-hinges beam with distributed mass and flexural stiffness along its length. This ideal 
three degrees of freedom system can be used in instrumentation of a such beam, which does not possess 
concentrated masses. In the framework of the identification of mode-shapes of an bi-hinges beam (i.e. bay of a 
bridge), the equivalent mass by equation (24) permits to locate accelerometers per 0.25L (as shown at Figure 4) 
and there measure the response acceleration histories, in order to calculate the real first three mode shapes of the 
beam. 
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