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Abstract: Recently, corrugated steel plate shear walls have been shown to be an efficient lateral force resisting 
system for building structures. Corrugated plates have higher out-of-plane stiffness and improved buckling 
stability in comparison with flat plates which result in improved hysteretic behavior. However, the thickness of 
the corrugated plates may be limited due to the cold-form process restrictions. This paper investigates the cyclic 
performance of double corrugated steel plate shear walls. One-story single-bay specimen was designed and 
modelled and parametric studies were performed. The parametric study considered the orientation of corrugated 
plates (horizontal or vertical), disconnection of infill plates from columns, disconnection of infill plates from each 
other, infill plate thickness and infill plate aspect ratio on cyclic performance of double corrugated steel plate shear 
walls. The present study results show that proper selection of the aforementioned parameters can lead to a desirable 
cyclic performance. In the end, a recommendation for calculating initial stiffness and ultimate strength of double 
corrugated steel plate shear walls is given. 
Keywords: Steel plate shear wall; Corrugated plate; Double infill plate; Cyclic behavior; Numerical simulation. 

 
 
1. Introduction 
 

Steel plate shear walls (SPSWs) have been widely used as a lateral force resisting system (LFRS) in building 
design and retrofit. SPSWs are classified into two types, stiffened and unstiffened. The stiffened types have higher 
stiffness and strength and energy dissipation. However, in the stiffened SPSWs the construction is significantly 
costly due to thin plates welding [1]. Unstiffened SPSWs have low buckling strength and allow shear buckling and 
development of diagonal tension field under lateral load. The post-buckling diagonal tension strips induce large 
axial and flexural demands on the frame. If the frame is capacity designed for expected yield strength of infill 
plates, as is required by AISC provisions [2], the required column sizes can be considerable. On the other hand, in 
retrofit situations large demands induced from the infill plates yielding would likely require significant 
reinforcement of the existing columns. For reducing column demand, researchers have proposed variety of 
methods such as perforating the infill plate to reduce SPSW stiffness and strength [3], using low yield point steel 
for infill plates [4] or utilizing light gauge plate for infill plates [5]. Berman and Bruneau [5] conducted tests on 
three light-gauge flat and corrugated SPSWs. The corrugated panel was placed diagonally with an inclination angle 
of 45 degrees to the horizontal line. The results showed that corrugated specimen experienced rapid loss in strength 
and infill plate fractures occurred at the location of repeated local buckling. 

Thin flat SPSWs experience severe pinching in their hysteresis loops due to diagonal tension field effects. To 
enhance the buckling load and hysteresis behavior of flat SPSWs, corrugated SPSWs were also proposed by 
Emami et al. [6]. They carried out laboratory tests to compare the cyclic performance of corrugated steel plate 
shear walls (CSPSWs) and a flat steel plate shear wall (FSPSW). The corrugated plates were laid both horizontal 
and vertical. It was revealed that CSPSWs show significantly less pinching in their hysteresis loops than the 
FSPSW due to higher out of plane stiffness and buckling strength of corrugated plates with respect to flat plates. 
Emami and Mofid [7] conducted numerical study on CSPSWs and confirmed the effectiveness of corrugated plates 
in enhancing SPSWs behavior. Farzampour et al. [8] in a numerical study compared monotonic behavior of SPSW 
and CSPSW with openings. Bahrebar et al. [9] performed numerical study on the cyclic behavior of the CSPSW 
with a square opening. Cao and Huang [10] carried out experimental and numerical study on two CSPSWs and 
showed that by properly designing the geometry of corrugated infill plates, the CSPSWs could avoid elastic 
buckling. Tong et al. [11] investigated the elastic buckling of double corrugated plate shear wall theoretically and 
numerically via finite element analysis. Dou et al. [12] studied the elastic shear buckling of infill panels in 
sinusoidally CSPSWs. Farzampour et al. [13] proposed design procedures for CSPSWs with reduced beam section. 
Bahrebar et al. [14] investigated the cyclic performance of perforated steel plate shear wall with curved corrugated 
webs. Fang et al. [15] carried out experimental study on the hysteretic behavior of semi-rigid frame with a 
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corrugated plate. Bahrebar et al. [16] studied the response of low yield point steel plate shear wall with curved 
corrugated web plates and reduced beam sections. 

The growth of SPSW structures in high-rise construction worldwide requires larger range of thicknesses for 
infill panels. However, the available thickness for single corrugated plates may be limited due to cold-forming 
process restrictions. A double corrugated SPSWs (DCSPSW) consists of two similar corrugated steel plates placed 
symmetrically and bolted together at contact points with uniform spacing (Figure 1). In this study, the cyclic 
performance of DCSPSWs is evaluated. To this end, a one-story single-bay specimen was modelled and analysed 
using nonlinear material and geometry options available in ABAQUS [17] software package. A parametric study 
was performed on the model by varying its geometry and corrugated plate properties. The parametric study 
considered the orientation of corrugated plates (horizontal or vertical), the effect of disconnecting the plates from 
the columns, the effect of disconnecting the plates from each other, corrugated plate thickness and aspect ratio. In 
the end, recommendations for calculating the initial stiffness and ultimate strength of DCSPSWs are given. 

 
Figure 1 . Double corrugated steel plate shear wall (DCSPSW) 

 
2. Finite element modeling 
 

One-story single-bay specimen with moment-resisting beam to column connections was preliminary designed 
according to the procedures specified in reference [1]. Specimens’ dimensions and component sizes are illustrated 
in Figure 2. In horizontal and vertical DCSPSW specimens, corrugation fold lines are parallel to the beams and 
columns, respectively. The height and length of specimens are measured as 1.74 m and 2.7 m, center to center of 
members, respectively. The model represents half-scale conventional residential building framing. 

The models were developed in the finite element package ABAQUS [17]. Both material and geometrical 
nonlinearities were considered in the models. The fish plates connecting the infill panel to the beams and columns, 
were not modelled in the finite element simulation. This approximation seems to have negligible effects on the 
analysis results [18]. Boundary frame components, i.e. beams, columns and stiffeners and double corrugated infill 
panels were modelled using S4R element, a four-node doubly curved shell element. This element has six degree 
of freedom per node with reduced integration and finite membrane strain. Mesh size for boundary frame members 
is 50 mm and for infill plate is 25 mm. Since the beam-to-column connections are rigid, shell elements at 
intersecting parts were directly connected. Bolts were not simulated directly. However, to model the effect of bolts, 
infill plates at the contact surfaces are directly connected (Figure 3). The double infill plates are connected to the 
boundary elements using “Tie” constraint command. The material for infill plate and boundary frame components 
were ST12 and ST37 steels according to DIN standard [19], respectively. Mechanical properties of ST12 and ST37 
steel were adopted from coupon tests done by Hosseinzadeh et al. [20] and Jahanpour et al. [21], respectively and 
are shown in Table 1. In order to get cyclic deteriorations in the steel material strength and stiffness, “ductile 
damage” using stress triaxiality dependent fracture initiation criterion and fracture evolution law in the form of 
strain softening was accommodated in material modelling [22]. 

To prevent the out-of-plane displacement of the specimen, as provided by lateral supports in typical test setups, 
the nodes at the perimeter of the top beam–column connections panel and at the center of the top beam were 
restrained from translation in out-of-plane direction. The bottom flange of the bottom beam was fixed in the model 
similar to the boundary conditions of Emami et al. [6]. Typical finite element models for both horizontal and 
vertical DCSPSW specimens are shown in Figure 4. It was reported that in single corrugated SPSWs initial 
imperfection has no meaningful effect on the finite element results [7]. However, in this study, initial imperfection 
as out of plane deformation of 1 mm according to model eigenvalue buckling analysis was applied to the model. 
This was achieved by using “imperfection” command to modify the nodes coordinates. 
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(a) Horizontal DCSPSW 

 
(b) Vertical DCSPSW 

 
(c) Geometry of corrugated plates 

Figure 2. DCSPSW specimens dimensions and member sizes (mm) 

 
 
 

Figure 3. Finite element model of DCSPSW infill plates 
 

Table 1. Material properties used in models 
Element Young’s modulus E yYield stress F uUltimate stress F 

 (GPa) (MPa) (MPa) 
Plate (ST12) 200 262 360 

Frame (ST37) 202 280 390 

Directly connected 
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(b) Vertical DCSPSW specimen        (a) Horizontal DCSPSW specimen               

Figure 4 . Typical DCSPSW finite element models 
 

As is practical in typical SPSW experiments [6,23], the effect of vertical load was neglected. The models were 
loaded horizontally at the top beam level using displacement control procedure according to the history shown in 
Figure 5. The loading protocol was created with combining the ATC-24 [24] and the AISC [2] requirements for 
cyclic loading as used in previous studies [23,25]. To develop the loading cycle amplitudes, specimen yield 
parameters are required. To this end, pushover analysis was carried out on the finite element model and yield 
displacement and force values were estimated.  

Two displacement amplitudes of one third and two third of the estimated yield displacement were selected for 
elastic cycles. As yield drift was estimated to be 0.3%, these amplitudes correspond to a drift of 0.1 and 0.2%, 
respectively. ATC-24 [24] recommends that number of cycles with peak displacement less than yield displacement 
should be at least six. Thus, three cycles at each of these drift amplitudes were performed. Three cycles were 
performed at the estimated yield displacement according to ATC 24 [24] loading protocol. After that, peak 
displacements were increased by a ductility increment of one until achieving a ductility of three. Three cycles at 
each amplitude were applied. After this step, the number of cycles at each peak displacement was reduced from 
three to two. Peak displacements were increased by a ductility increment of one until reaching an estimated 
ductility of seven. Estimated ductility of seven coincided with 2.0% drift. After this point, peak displacements 
were increased by drift increments of 0.5% until reaching drift of 4.0%, and increments of 1.0% until reaching 
drift of 6.0%. Figure 5 shows the resulting loading history. 

 

 
Figure 5. Cyclic loading protocol 

 
3. Validation 
 

In order to verify the accuracy of the finite element model, two sets of well-established experimental tests were 
considered for calibration. The first set is a flat SPSW tested by Vian et al. [25], and the other set is flat and single 
horizontal/vertical corrugated SPSWs tested by Emami et al. [6]. Hysteresis curves as well as model overall 
behaviour and failure modes under cyclic loading have been compared with those obtained from the experiments. 
Hysteresis curve of flat SPSW tested by Vian et al. and numerical results are shown in Figure 6. The experimental 
and numerical results of models tested by Emami et al. are illustrated in Figure 7 and tabulated in Table 2. Good 
agreement between the numerical and test results indicates the validity of the finite element modeling and its 
assumptions. 
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Figure 6. Comparison of experimental and analytical hysteresis curve for SPSW tested by Vian et al. [25] 

 
(a) Flat SPSW 

 
(b) Horizontal corrugated SPSW 

 
(c) Vertical corrugated SPSW 

Figure 7. Comparison of experimental and analytical hysteresis curve for SPSWs tested by Emami et al. [6] 

Table 2. Comparison of experimental and analytical results for initial stiffness and ultimate strength 
 Initial stiffness (MN/m) Ultimate strength (kN) 
 Experimental Numerical Exp/Num Experimental Numerical Exp/Num 

F-SPSW 108 110.8 0.98 597 599.6 1.00 
H-CSPSW 130 133.1 0.98 502 492.7 1.02 
V-CSPSW 125 131.3 0.95 498 524.5 0.95 
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4. Parametric study 
 
To study the performance of doubly corrugated SPSWs, parametric studies were carried out on specimens 

whose details are illustrated in Figure 2. Parametric study includes the effect of corrugated plates orientation 
(horizontal or vertical), whether corrugated plates are connected to the columns or not, whether corrugated plates 
are connected together or not, corrugated plate thickness (t) and DCSPSW aspect ratio (Ar). The four different 
light gauge plate thicknesses and four different aspect ratios (length divided by height of the plate) considered are 
indicated in Table 3. 

Table 3. DCSPSW parameters variation 
Corrugated plates 
orientation 

Infill plate to 
columns connection 

Corrugated plate to 
plate connection 

corrugated plate 
thickness, t (mm) 

DCSPSW 
aspect ratio, Ar  

H (horizontal) & 
V (vertical) 

Yes, No Yes, No 0.5, 0.6, 0.7, 0.8 1, 1.67, 2.33, 3 

 
4.1 Effect of corrugated plate orientation 

Figure 8 presents the hysteresis curves for horizontal and vertical DCSPSWs and bare frame. Thickness of infill 
plate is 0.5 mm and aspect ratio is 1.67 and infill plates are connected to each other and fully restrained by beams 
and columns. According to ATC recommendation [26] ultimate displacement capacity of specimens should be 
limited to deformation associated with 80% of the ultimate strength on the descending branch of the modified 
backbone curve. Here, 20 % strength loss occurs at the drift of 3%. So hysteresis curves are reported up to 3% 
drift. The initial stiffness, ultimate strength and energy dissipation capacity of specimens are tabulated in Table 4. 
It is clear that DCSPSWs have much better performance in comparison to bare frame due to contributions of infill 
plates. Also note that, the horizontal and vertical DCSPSWs have comparable stiffness, strength, and energy 
dissipation capacity. 

Figure 9 illustrates the maximum in-plane principal stress contour in horizontal and vertical DCSPSWs at 3% 
drift. In DCSPSWs like single corrugated SPSWs, diagonal tension strips develop to resist lateral load. In addition, 
like single corrugated SPSWs the inclination angle of the tension field measured relative to the horizontal axis in 
horizontal DCSPSW specimen is less than that of vertical DCSPSW. Thus in H-DCSPSW, the columns and beams 
at the boundary play a role in forming tension field strips. On the contrary, in V-DCSPSW, as inclination angle of 
the tension strips is higher, development of diagonal tension field strips relies mostly on beams and less on columns. 
 

 
                                          (a) H-DSPSW                                                         (b) V-DSPSW 

 
(c) Bare frame 

Figure 8. Hysteresis curves of DCSPSWs with different configurations and bare frame 
 

Table 4. Performance parameters of specimens 
Parameter H-DCSPSW V-DCSPSW Bare Frame 

Initial stiffness (MN/m) 145.6 145.3 27.7 
Ultimate strength (kN) 619.9 620.7 465.3 

Energy dissipation (kN-m) 379.2 395.8 288.4 
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(a) H-DCSPSW 

 
(b) V-DCSPSW 

Figure 9. Maximum in-plane principal stress contours in DCSPSW (N/m2) 
 

4.2 Effect of infill plate to column connections 
The diagonal tension strips impose high axial and flexural demands on the columns which may lead to 

premature failure of columns. For reducing column demands in SPSWs, several methods have been suggested by 
researchers including releasing the infill plate from columns and connecting it only to the beams [27,28]. In 
addition, connecting the corrugated infill plate specially the light gauge one to the surrounding frame members 
proved to be difficult due to thickness and geometry of the plate [5]. This could considerably increase the 
construction time. In beam-only-connected SPSWs, infill panel is only connected to the frame beams and 
connections between infill panel and columns are omitted. 

The effects of infill plate connections to columns on the hysteretic performance of DCSPSW are investigated 
in this section. To make beam-only-connected DCSPSW in ABAQUS, it is just enough to remove the tie 
constraints between the columns and corrugated plates. The performances of DCSPSWs with both horizontal and 
vertical corrugation orientation with t=0.5 mm and Ar=1.67 were evaluated. Infill plates were connected to each 
other. The hysteresis curves of beam-only-connected horizontal and vertical DCSPSWs are illustrated in Figure 
10. The initial stiffness, ultimate strength and energy dissipation capacity of these specimens are presented in Table 
5. By comparing Table 4 and Table 5, it can be seen that detaching columns from the infill plates reduces column 
demands at the expense of reduction in initial stiffness, ultimate strength and energy dissipation of DCSPSWs. In 
the case of horizontal DCSPSW, releasing columns from the infill plates decreased the initial stiffness from 145.6 
MN/m in the fully connected specimen to 28.3 MN/m, showing 81% reduction. It reduced the ultimate strength 
and energy dissipation from 619.9 to 497.0 kN and 379.2 to 308.5 kN-m showing 20% and 19% reductions, 
respectively. However, in the case of vertical DCSPSW releasing columns from the infill plates decreased the 
initial stiffness from 145.3 MN/m in the fully connected specimen to 113.3 MN/m showing only 22% reduction. 
It reduced the ultimate strength and energy dissipation from 620.7 to 587.5 kN and 395.8 to 356.6 kN-m showing 
5% and 10% reductions, respectively. It can be seen that the decrease in responses in beam-only-connected vertical 
DCSPSW is less than the decrease in responses in beam-only-connected horizontal DCSPSW and thus, the former 
has a better performance. 

Figure 11 illustrates the maximum in-plane principal stress contour in beam-only-connected H-DCSPSW and 
V-DCSPSW at 3% drift. In the previous section, it was shown that in H-DCSPSW, columns and beams play a role 
in forming diagonal tension field strips. Thus, by comparing Figure 9 (a) with Figure 11 (a) it can be seen that 
releasing columns from the infill plates in H-DCSPSW eliminates vertical boundary condition and thus eliminates 
most of the active tension field strips and just one strip from bottom left corner to upper right corner remains in 
beam-only-connected H-DCSPSW. Eliminating tension field strips corresponds to a decrease in infill plates’ 
contributions and causes substantial decrease in initial stiffness, ultimate strength and energy dissipation. On the 
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contrary, in V-DCSPSW, formation of tension field strips relies more on horizontal boundary conditions than 
vertical boundary conditions. Comparing Figure 9 (b) with Figure 11 (b) shows that releasing columns from the 
infill plates in V-DCSPSW eliminates just a few tension field strips and major part of infill plates’ contributions 
remain. Therefore, beam-only-connected V-DCSPSW experiences less reduction in initial stiffness, ultimate 
strength and energy dissipation in comparison with beam-only-connected H-DCSPSW. 

 

 
                         (a) Beam-only-connected H-DCSPSW                 (b) Beam-only-connected V-DCSPSW 

Figure 10. Hysteresis curves of DCSPSWs with beam-only-connected infill plates 
 

Table 5. Performance parameters for beam only connected specimens 
Parameter H-DCSPSW V-DCSPSW 

Initial stiffness (MN/m) 28.3 113.3 
Ultimate strength (kN) 497.0 587.5 

Energy dissipation (kN-m) 308.5 356.6 
 

 
(a) Beam-only-connected H-DCSPSW 

 
(b) Beam-only-connected V-DCSPSW 

Figure 11. Maximum in-plane principal stress contours in beam only connected DCSPSW (N/m2) 
 

4.3 Effect of plate to plate connections in DCSPSWs 
Figure 12 presents the hysteresis curves for horizontal and vertical DCSPSWs when the infill plates are detached 

from each other. In other words, bolts are omitted and corrugated plates are placed simply alongside each other 
with no connections. Thickness of infill plates is 0.5 mm and aspect ratio is 1.67 and infill plates are connected 
fully to the beams and columns. The initial stiffness, ultimate strength and energy dissipation capacity of 
DCSPSWs with separate infill plates are presented in Table 6. It can be seen that horizontal and vertical DCSPSWs 
with separate infill plates have relatively similar cyclic performance. In addition, comparing Table 4 and Table 6 
reveals the effect of plate to plate connections on the response of DCSPSWs. In the case of H-DCSPSW, detaching 
plates from each other decreased the initial stiffness, ultimate strength and energy dissipation from 145.6 MN/m, 
619.9 kN and 379.2 kN-m to 144.9 MN/m, 606.9 kN and 371.3 kN-m showing 0.5%, 2% and 2% reductions, 
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respectively. In the case of V-DCSPSW detaching plates from each other decreased the initial stiffness, ultimate 
strength and energy dissipation from 145.3 MN/m, 620.7 kN and 395.8 kN-m to 142.3 MN/m, 610.4 kN and 363.9 
kN-m showing 2%, 2% and 8% reductions, respectively. 

It can be seen that detaching plates from each other reduces the responses in DCSPSWs. This reduction is 
attributed to the fact that when DCSPSW infill plates are not connected to each other the out of plane stiffness of 
the section decreases and this causes a lower performance. However, this reduction is relatively small and 
DCSPSWs with detached infill plates have acceptable cyclic performance. 
 

 
                                          (a) H-DCSPSW                                                     (b) V-DCSPSW 

Figure 12. Hysteresis curves of DCSPSWs with detached infill plates 
 

Table 6. Performance parameters for DCSPSWs with detached infill plates 
Parameter HDSPSW VDSPSW 

Initial stiffness (MN/m) 144.9 142.3 
Ultimate strength (kN) 606.9 610.4 

Energy dissipation (kN-m) 371.3 363.9 
 
4.4 Effect of thickness 

The effects of infill plate thickness on the cyclic behavior of DCSPSWs are investigated in this section. 
Performances of DCSPSWs with both horizontal and vertical orientations with t = 0.5, 0.6, 0.7, and 0.8 mm were 
evaluated. Infill plates are connected fully to the beams and columns and also are connected to each other. Aspect 
ratio is 1.67. The cyclic behavior of horizontal and vertical DCSPSWs are illustrated in Figures 13 and 14, 
respectively. From these figures it can be seen that for both horizontal and vertical DCSPSWs increasing the infill 
plate thickness improves the cyclic behavior. However, it should be noted that this increase can also lead to larger 
demands on boundary frame members and this must be considered in the design. 

The response of H-DCSPSW and V-DCSPSW as a function of infill plate thickness is given in Figures 15 (a) 
through (c). Initial stiffness, ultimate strength and energy dissipation increase proportionally with infill plate 
thickness for both. For H-DCSPSW increasing the infill plate thickness from 0.5 mm to 0.8 mm result in 43%, 
11% and 12% increase in the initial stiffness, ultimate strength and energy dissipation, respectively. 

 

 
                                               (a) t=0.5 mm                                                        (b) t=0.6 mm      

 
                                              (c) t=0.7 mm                                                       (d) t=0.8 mm 

Figure 13. Hysteresis curves of horizontal DCSPSW with different plate thicknesses 
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                                             (a) t=0.5 mm                                                         (b) t=0.6 mm 

 
                                             (c) t=0.7 mm                                                         (d) t=0.8 mm 

Figure 14. Hysteresis curves of vertical DCSPSW with different plate thicknesses 
 

 
(a) Initial stiffness 

 
                                         (b) Ultimate strength                                       (c) Dissipated energy 

Figure 15. The response of H-DCSPSW and V-DCSPSW as a function of infill plate thickness 
 

4.5 Effect of panel aspect ratio 
The effects of panel aspect ratio (Ar) on the cyclic performance of DCSPSWs are investigated in this section. 

To study the different panel aspect ratios, the panel height was kept constant and equal to 1500 mm and length of 
the panel was varied. Panel aspect ratios are summarized in Table 7 and illustrated in Figure 16. The hysteresis 
curves of the horizontal DCSPSWs with t=0.5 mm are shown in Figure 17. Infill plates are connected fully to the 
beams and columns and are connected to each other. From Figure 17, it is found that increasing the panel aspect 
ratio from 1.00 to 3.00 can be effective in enhancing the cyclic performance of the DCSPSWs. In fact, increasing 
of the panel aspect ratio increases the number of tension field strips forming in the panel and this results in greater 
initial stiffness, ultimate strength and dissipated energy. 
 

Table 7. Panel aspect ratios 
H, Height of panel (mm) 1500 1500 1500 1500 
L, Length of panel (mm) 1500 2500 3500 4500 

, panel aspect ratiorA 1.00 1.67 2.33 3.00 
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      (a) Ar =1.00                  (b) Ar =1.67                       (c) Ar =2.33                            (d) Ar =3.00 

Figure 16. Different panel aspect ratios 
 

 
                                                (a) Ar=1.00                                                         (b) Ar=1.67 

 
                                              (c) Ar=2.33                                                           (d) Ar=3.00 

Figure 17. Hysteresis curves for beam-only-connected horizontal DCSPSW with varying panel aspect ratios 
 
The responses of horizontal DCSPSWs as a function of panel aspect ratio are tabulated in Table 8. It can be 

seen that, initial stiffness, ultimate strength and energy dissipation increase with infill panel aspect ratio. Increasing 
the panel aspect ratio from 1.0 to 3.0 increase the initial stiffness, ultimate strength and energy dissipation from 
100.2 MN/m, 553.7 kN and 357.3 kN-m to 235.3 MN/m, 753.6 kN and 412.4 kN-m showing 135%, 36% and 15% 
increase, respectively. So it is better to use DCSPSWs in wider bays of a building. 

 
Table 8. Performance parameters of horizontal DCSPSWs as a function of panel aspect ratio 

Ar Initial stiffness Ultimate strength Energy dissipation 
 (MN/m) (kN) (kN-m) 

1.00 100.2 553.7 357.3 
1.67 145.6 619.9 379.2 
2.33 190.5 687.1 390.4 
3.00 235.3 753.6 412.4 

 
5. Initial stiffness and ultimate strength of DCSPSWs 

 
Ultimate shear strength of DCSPSWs can be estimated via Equation (1): 
 
𝐹𝐹𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑓𝑓𝑠𝑠 + 𝐹𝐹𝑝𝑝𝑝𝑝                          (1) 

 
where 𝐹𝐹𝑠𝑠𝑠𝑠 is the ultimate shear strength of the steel plate shear wall,  𝐹𝐹𝑓𝑓𝑠𝑠 is strength of bare frame and 𝐹𝐹𝑝𝑝𝑝𝑝 is 
strength of plate. 𝐹𝐹𝑓𝑓𝑠𝑠 is given by Equation (2): 
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𝐹𝐹𝑓𝑓𝑠𝑠 = 4𝑀𝑀𝑝𝑝 ℎ𝑠𝑠⁄                                           (2) 
 
where 𝑀𝑀𝑝𝑝  is the smallest of the plastic moment capacity of the beam and columns and ℎ𝑠𝑠  is height of the 
specimen. 𝐹𝐹𝑝𝑝𝑝𝑝 is given by Equation (3) [13]: 
 
𝐹𝐹𝑝𝑝𝑝𝑝 = 𝐿𝐿𝐿𝐿�𝜏𝜏𝑐𝑐𝑐𝑐.𝑖𝑖𝑖𝑖

𝑒𝑒 + 0.5𝜎𝜎𝑝𝑝𝑡𝑡 sin 2𝜃𝜃�                                                     (3) 
 
in which 𝐿𝐿  and 𝐿𝐿  are length and thickness of the infill plate, respectively. 𝜏𝜏𝑐𝑐𝑐𝑐.𝑖𝑖𝑖𝑖

𝑒𝑒  is the plate interactive shear 
buckling stress and 𝜎𝜎𝑝𝑝𝑡𝑡 is the yield stress of tension field calculated via Von-Mises criterion. . 𝜏𝜏𝑐𝑐𝑐𝑐.𝑖𝑖𝑖𝑖

𝑒𝑒  is obtained as 
follows [13,29]: 
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in which 𝜏𝜏𝑡𝑡  is yielding shear stress, 𝜏𝜏𝑐𝑐𝑐𝑐.𝐿𝐿

𝑒𝑒  and 𝜏𝜏𝑐𝑐𝑐𝑐.𝐺𝐺
𝑒𝑒  are local and global shear buckling stresses which can be 

calculated from Equations (5) and (6): 
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𝐸𝐸 is Young’s modulus of elasticity and 𝜗𝜗 is Poisson ratio; ℎ is panel height; 𝜑𝜑 is boundary condition factor 

varying from 1.0 to 1.9 and assumed to be 1.0 due to simple support condition [13]. 𝛾𝛾 is a factor which accounts 
for corrugation geometry and obtained using Equation (7): 

 
𝛾𝛾 = 𝑎𝑎+𝑏𝑏

𝑎𝑎+𝑐𝑐
                                                                                        (7) 

 
𝑎𝑎 , 𝑏𝑏 , 𝑐𝑐 and 𝑑𝑑 are parameters of corrugated panel geometry which are illustrated in Figure 18. 
𝜎𝜎𝑝𝑝𝑡𝑡 is the yield tension field stress calculated using Equation (8) [13]: 
 
𝜎𝜎𝑝𝑝𝑡𝑡2 +(3𝜏𝜏𝑐𝑐𝑐𝑐.𝑖𝑖𝑖𝑖

𝑒𝑒 sin 2𝜃𝜃)𝜎𝜎𝑝𝑝𝑡𝑡 + �3𝜏𝜏𝑐𝑐𝑐𝑐.𝑖𝑖𝑖𝑖
𝑒𝑒 2 − 𝜎𝜎𝑡𝑡2� = 0                                                      (8) 

 
where 𝜃𝜃 is tension field inclination angle measured relative to the horizontal axis and assumed to be 30 and 60 
degree for horizontal and vertical specimens [6]. 𝜎𝜎𝑡𝑡 is yield stress of steel plate. 
 

 
Figure 18. Parameters of corrugated panel geometry 

 
To estimate the equivalent thickness of DCSPSWs, a single panel corrugated SPSW with the same infill plate 

shape and twice the thickness was modeled and their initial stiffness and ultimate strength were calculated (Figure 
19). The boundary elements (beams and columns) were kept the same. Initial stiffness and ultimate strength of 
DCSPSW with each plate thickness of t were compared with those of single corrugated SPSW with infill plate 
thickness of 2t. Thus, initial stiffness ratio was defined as the ratio of initial stiffness of double panel SPSW with 
each plate thickness of t with respect to that of single panel SPSW with infill plate thickness of 2t. Ultimate strength 
ratio was defined in a similar way. 

Figure 20 presents the initial stiffness and ultimate strength ratio as a function of t for both horizontal and 
vertical corrugated SPSWs. Panel aspect ratio is 1.67. It can be seen that the initial stiffness ratio is a bit larger 
than one for considered thicknesses showing that initial stiffness of double corrugated SPSW is a bit larger than 
initial stiffness of single corrugated SPSW with infill plate thickness of 2t. This can be attributed to the fact that 
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double corrugated SPSW has larger out of plane stiffness in comparison to single corrugated SPSW with thickness 
of 2t. Ultimate strength ratio is approximately equal to one which means that ultimate strength of double panel 
SPSW is approximately equal to ultimate strength of single panel SPSW with infill plate thickness of 2t. 

 
Figure 19. Comparison of double corrugated SPSW with plate thicknesses of t with single corrugated SPSW with 
infill plate thickness of 2t 
 

 
                                        (a) Initial stiffness ratio                                (b) Ultimate strength ratio 

Figure 20. Initial stiffness and ultimate strength ratio as a function of t 
 

Initial stiffness and ultimate strength ratio as a function of panel aspect ratio (Ar) for horizontal corrugated 
SPSWs are tabulated in Table 9. Each infill plate thickness in double panel SPSWs is 0.5 mm and infill plate 
thickness in single panel SPSWs is 1.0 mm. It can be seen that the initial stiffness and ultimate strength of 
DCSPSW is greater than those of single corrugated SPSW. However, the difference is less than 6% and 3% for 
initial stiffness and ultimate strength ratio, respectively. Thus, it can be concluded that for different thicknesses 
and aspect ratios using an equivalent thickness of 2t in Equations (3) to (8) for DCSPSW is valid and conservative. 

To elaborate, ultimate shear strength of horizontal and vertical DCSPSWs with each infill plate thickness of 0.5 
mm and panel aspect ratio of 1.67 were estimated through analytical method using Equations (1) to (8) and 
compared with finite element (FE) results (Table 10). Equivalent thickness of the infill plate was assumed to be 
1.0 mm. Table 10 indicates that analytical equations can predict the ultimate strength of DCSPSWs with less than 
4% error. 

Table 9. Initial stiffness and ultimate strength ratio as a function of panel aspect ratio 

Ar 
DCSPSW 

(each infill plate thickness = t) 
Single corrugated SPSW 

(infill plate thickness = 2t) ratios 

 Initial stiffness 
(MN/m) 

Ultimate strength 
(kN) 

Initial stiffness 
(MN/m) 

Ultimate strength 
(kN) 

Initial stiffness 
ratio 

Ultimate 
strength ratio  

1.00 100.2 553.7 95.4 537.6 1.05 1.03 
1.67 145.6 619.9 137.4 601.9 1.06 1.03 
2.33 190.5 687.1 181.4 673.6 1.05 1.02 
3.00 235.3 753.6 224.1 731.7 1.05 1.03 

 
Table 10. Comparison of ultimate strength calculated with analytical method and FE analysis 

Specimen Strength by analytical method Strength by FE analysis Error 
 (kN) (kN) (%) 

Horizontal 642.2 619.9 3.5 
Vertical 642.2 620.7 3.4 
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6. Conclusions 
 
Cyclic performance of double corrugated steel plate shear walls (DCSPSWs) was investigated in this study. 

Several finite element models were developed and analysed for parametric studies. Infill plate orientation, 
connection of infill plate to columns, connection of infill plates together, infill plate thickness and panel aspect 
ratio were considered as the main parameters in this performance evaluation. Responses of interest are force-
deformation relationship, initial stiffness, ultimate strength and energy dissipation capacity. The following 
conclusions can be drawn based on this study: 

1) Horizontal and vertical DCSPSWs fully restrained by beams and columns, have comparable stiffness, 
strength and energy dissipation capacity. 

2) Releasing columns from infill plates reduces column demands at the expense of reduction in seismic 
responses of DCSPSWs. However, decrease in responses of beam-only-connected V-DCSPSWs is meaningfully 
less than the decrease in responses of beam-only-connected H-DCSPSWs and thus beam-only-connected V-
DCSPSWs have a better performance. 

3) Detaching corrugated plates from each other in DCSPSWs cause negligible reduction in responses in 
comparison with bolted plates. In other words, DCSPSWs with detached infill plates have acceptable cyclic 
performance. 

4) By increasing the corrugated plate thickness, initial stiffness, ultimate strength and energy dissipation 
increase proportionally for both H-DCSPSW and V-DCSPSW. 

5) Increasing panel aspect ratio can be effective in enhancing the cyclic performance of the DCSPSWs. In other 
words, it is better to use DCSPSWs in wider bays of a building. 

6) The initial stiffness and ultimate strength of DCSPSWs can be estimated by using an equivalent thickness of 
2t in the given equations. 

7) Analytical equations can predict the ultimate strength of DCSPSWs with less than 4% error. 
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