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Abstract: Based on the Kirchhoff thin plate theory and elastodynamics theory, the Kirchhoff small deformation 

infinite elastic thin plate is adopted to simulate the pavement, and the orthotropic elastic half space is used to 

simulate subgrade. The mechanical model and dynamic equations in the rectangular coordinate system are 

established for the infinite elastic plate on orthotropic foundation subjected to moving loads. The integral forms 

of plane strain dynamic responses are derived by means of Fourier transform and inverse Fourier transform. 

Numerical examples are conducted on condition that the harmonic vibrating strip load is applied on the plate 

surface. Studies are conducted to investigate the effect of the soil orthotropic parameters on dynamic response of 

subgrade and the plate. The results indicate that the anisotropy of the soil has a great influence on the dynamic 

response of subgrade and pavement interaction, and that dynamic response can be described more accurately by 

considering the orthogonal anisotropy of foundation. 
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1. Introduction 
 

The research of dynamic response of infinite plate on orthotropic foundation subjected to moving loads in the 

practical engineering is important and significant, as some of the conclusions may be used in the dynamic 

behaviors of runways and roadways. The loads on the pavement slab are usually treated as static in some studies 

about the road surface. In fact, the load on the plate should be the moving loads with uniform speed when 

vehicles run normally. Under such situation, it is necessary to study the dynamic response of plate. A number of 

studies have been conducted recently to find the dynamic response of plate on the elastic foundation subjected to 

moving loads. Cheng[1] studied dynamic response of a thin rectangular plate on Winkler elastic foundation by 

means of the variational method. Zheng[2] analyzed dynamic response of simply supported rectangular plates on 

Winkler elastic foundation under moving loads using mode superposition method. Dynamic response of infinite 

plate on elastic Winkler foundation was obtained using Integral transform method by Sun[3] and Kim[4][5]. 

Generally, there is a big difference between Winkler foundation model and actual base model. Elastic half-space 

foundation model can reflect not only the deformation of soil within the range of loads, but also the displacement 

of soil outside the scope of loads. Experiments on dynamic response of pavement under moving load was 

investigated by Chen[6]. Jiang[7] analyzed the responses of asphalt pavement on the elastic isotropic foundation 

by the finite element software. Zhang[8] obtained the dynamic response of the orthogonal anisotropic medium 

plane strain problem under harmonic loads using the integral transform method. During deposition process, 

foundation soil shows significant anisotropy[9]. In addition, the reinforced soil displays the obvious 

anisotropy[10]. However, the dynamic response of the infinite plate on the orthotropic foundation goes largely 

unexplored. Based on the previous researches, the dynamic responses of an infinite plate on the orthotropic 

foundation are studied by the integral transformation method. Furthermore, the present study illustrates the 

influences of different soil parameters on the plate deformation, the soil vertical normal stress and contact 

stress between the plate and the foundation. 

 

2. The problem description 
 

2.1. The mechanical model 

As shown in Fig. 1, a lateral mechanical load
1( , )q x t  moves with the consent velocity c  parallel to the 

positive 1x -axis on the plate surface, and   is the angular frequency. The subgrade reaction is expressed as 

63

Journal of Materials and Applications 6:2 (2017)



1( , )p x t  that acts on the bottom of plate. According to the law of action and reaction, there is also a force 

1( , )p x t  on the ground surface and in the opposite direction.  
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Figure 1 The mechanics model of an elastic plate on an elastic half-space 

 

2.2. The basic equations 
Under the dynamic load, the motion differential equation of plate on the elastic foundation is written as 
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
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
 is the flexural rigidity of elastic plate with E being the elastic modulus,  being the 

Poisson's ratio, h being the thickness; m is the mass of infinite plate per unit area; and 
1w is the deflection of thin 

plate on foundation. 

The subgrade soil can be viewed as the plane strain state[11]. For the plane strain problem of orthotropic 

elastic foundation, the equations of motion of the half-space are given as 

1 1 1 1

1 1 1 1

2 2 2 2

11 13 55 552 2 2

1 11 1

2 2 2 2

55 13 55 332 2 2

1 11 1

( )

( )

x z x x

z x z z

u u u u
c c c c

x zx z t

u u u u
c c c c

x zx z t





   
    

    


    
        

                                             (3) 

where ijc  are the elastic constants of the foundation；
1xu 、

1z
u are the soil displacement along 1x -axis and 1z -

axis, respectively;  is mass densities of the soil. 

The stress-strain relationships of soil are 
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where 
1 1 1 1x z z x  、 、 are the stress components. 

Referring to reference[12], we introduce 1x x ct  and 1z z .Then a steady pattern is created in the medium 

with respect to an observer situated in a moving coordinate system. 

The variables in the moving coordinate system can be expressed as 
i

1 1( , , ) ( , )e tx ct z t x z                                                         (5) 

i

1 1( , , ) (i )e t

xx ct z t c                                                      (6) 

2 2 i

1 1( , , ) ( 2i )e t

xx xx ct z t c c                                                  (7) 

where   represents any variable,   is the first derivative of time t,   is the two derivative of the time t. 

Thus, Eqs. (2), (3) and (4) can be rewritten as  
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2.3. The boundary conditions 

The boundary conditions for the half-space surface of elastic foundation are lim ( , , ) 0x
x

u x z t


 , 

lim ( , , ) 0z
x

u x z t
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 , lim ( , , ) / 0x
x

u x z t x


   , lim ( , , ) / 0z
x

u x z t x


   . 

When the plate is cooperated with the ground where it is placed, the bottom surface of plate and foundation 

surface have the same vertical displacement. Moreover, the plate is assumed in the smooth contact with the 

foundation[13]. Then, the boundary conditions at the surface ( 0z  ) are given as  
i( ,0, ) ( )e t

z x t p x                                                            (11) 
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3. The Solution procedure 
 

3.1. Fourier transform 
To solve Eqs.(8)and(9), we use Fourier transform with respect to x-coordinate and its inverse transformation 

that are defined by 
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Fourier transform of the dynamic Eq. (8) gives 
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Using Eq. (14) to transform the dynamic Eq.(9), and introducing boundary conditions, a new expression in 

matrix form can be obtained as 

2
11 12 11

2

22 12 22

0 0 0
0

0 0 0

x x x

z z z

u u uA B D

A B Dzz u u u

           
            

               

                   (17) 

where
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The characteristic equation of Eq. (17) can be formulated as 
4 2
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where
1 11 22a A A , 2
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Characteristic equation (18) is a quartic equation with the complex coefficients, and it has four roots in 

forms 1 2,   . j  is a complex with the positive real part, namely Re[ ] 0,( 1,2)j j ≥ , and it can be expressed 

as follows 
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where 2

1  and 2

2 refer to two different complexes.  

The solutions of Eq. (17) can be written as 
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in which 
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3.2. General solutions 

For the dynamic analysis of the orthotropic half-space ( z≥0 ), the fluctuation shows a damping trend such 

as lim ( , , ) 0x
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Therefore, 
jH should be zero in the general solution of integral forms of the displacement component for the 

orthotropic media under moving load. Then, Eq.(20) can be rewritten as 
2 2

1 1

e ,   ej jz z

x j j z j

j j

u F u F
 


 

 

                                                        (21) 

Performing Fourier transform to the Eq. (10), and substituting Eq.(21) into its transforming form, we have 
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Performing Fourier transform to the boundary conditions Eqs.(11)and(12) and substituting into Equation (22) 

gives the coefficient
jF  

1 2 2 2 1 1( i ) / ,    ( i ) /F p F p                                                     (23) 

where
13 1 33 1 2 2 13 2 33 2 1 1( i )( i ) ( i )( i )c c c c                 . 

Substituting Eqs.(16) and (21)and (23) into displacement boundary condition Eq.(13), the subgrade reaction 

is obtained as 
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Thus, the deflection of plate is 
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The soil vertical normal stress is 
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Taking Fourier transform of the load on thin plate, we have 
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Substituting Eq.(27) into Eqs.(24) and (25) and (26), the integral form solutions can be obtained by the 

inverse Fourier transform such as 
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4. The computational examples  
 

To check the numerical results, a particular highway is chosen at which these values of consents have been 

measured. The parameters of load are b=0.075m; q0=100kPa; f=8Hz; c=35m/s. The elastic parameters of plate 

are E=30GPa; μ=0.15; h=0.25m; m=2400kg/m3. The parameters of soil are
xE =50MPa; xy =0.25; 

z xG =24MPa; 

 =1815 kg/m3; 
Rc =106.4m/s; 

sc =115m/s; damping ratio η=0.05. This paper introduces proportionality 

coefficient 
mk (m=1,2,3,4) to describe orthogonal anisotropy of the soil, namely, 1y xE k E , 

2z xE k E , 
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3xz xyk  , 
4yz xyk  . The soil is isotropic when

mk is 1. In practical engineering, the anisotropy of soil is 

usually expressed by engineering constants, and the relationship between the stiffness coefficient and the 

engineering constant is show in literature[14]. Based on the above method and fast Fourier transform theory[15], 

the numerical computation is implemented by MATLAB software. If the plate is infinitely large and the velocity 

is constant, the deflected shapes subjected to the moving load are the same at any instant along the moving axis, 

which means that the deflected shape is moving with the load[5]. The zero point represents the location of the 

load center. 
ij  has little change and little impact on the calculation results so that this paper only considers the 

influence of 
iE on dynamic response. In this paper 

3k is 1.2 and
4k is 1.6. 

Figure 2(a) shows plate deformation curves due to different
1k on condition that

2k is 0.8. Obviously, the 

anisotropy of the soil has a certain influence on the plate deformation. The vertical displacement of plate on the 

isotropic soil is small and flattens out, and its maximum is only greater than that of
1k =0.5. It is clear that plate 

displacement increases with the increase of the 
1k value. But the increase is very small, and the value can be 

ignored. Especially plate deformation curve almost overlaps when 
1k is 1.2 and 

1k is 2.0. It shows that the elastic 

modulus
yE  of soil has very little influence on displacement of plate. The effect of 

2k  on the plate deformation 

shapes can be observed in Figure 2(b) on condition that
1k is 1.2. As the value of 

2k  increases, plate maximal 

displacement decrease obviously. The maximum vertical displacement of plate on the isotropic soil is only less 

than that of
2k =0.8. If the plate deformation is too large, we can increase the elastic modulus

zE  of soil 

appropriately, the effect is not obvious to change
yE . 
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Figure 2 Plate deformation curves 

Figure 3(a) reflects contact stress curves between the plate and the foundation due to different
1k when

2k is 

0.8. As the value of 
1k  increases, contact stress decreases. But the decrease is very small, and the decrement can 

be ignored. Especially contact stress curve almost overlaps when 
1k =1.2 and 

1k =2.0. The contact stress 

maximum of the isotropic soil is only less than that of 
1k =0.5. It shows that the elastic modulus

yE  of soil has 

very little influence on contact stress. As can be seen in Figure 3(b), the effect of 
2k  on contact stress is obvious 

on condition that
1k is 1.2. As the value of 

2k  increases, maximal stress decrease obviously. The maximum stress 

on the isotropic soil is only greater than that of
2k =0.8. On the right side of the loading area, oscillation 

amplitude of the contact stress decreases as the value of 
2k  increases. About 4 meters away from the left side of 

the loading area, the anisotropy of the soil have little impact on contact stress, and contact stress is almost close 

to zero. If the contact stress is too large, we can decrease the elastic modulus
zE  of soil appropriately, the effect 

is not obvious to change yE . 

The effect of 1k  on the soil vertical normal stress shapes is shown in Figure 4(a) when 2k is 0.7. As the value 

of 1k  increases, vertical normal stress decreases. Stress curve of 1k =0.5 is close to that of mk =1. The maximum 

value of vertical normal stress appears at about depth of 0.1m. The depth of tensile stress is smaller with the 

value of 1k  increasing. Figure 4(b) shows soil vertical normal stress curves due to different 2k on condition 

that 1k is 1.25. As the value of 2k  increases, vertical normal stress increases obviously. The stress on the 
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isotropic soil is only less than that of
2k =0.8. The maximum value of vertical normal stress appears at about 

depth of 0.1m.  
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Figure 3 Contact stress curves between the plate and the foundation  
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Figure 4 The soil vertical normal stress curves at the center of load  

 

5. Conclusions 
 

The work studied the dynamic response of infinite plate on the orthotropic foundation subjected to the 

harmonic moving loads in rectangular coordinate system. Through the numerical analysis, several significant 

conclusions are drawn as: (1)The anisotropy of the soil has a great influence on the plate deformation, the 

contact stress and the soil vertical normal stress. It is suggested that the effect of the orthotropic soil on the 

dynamic response of the foundation is considered in the actual projects. (2)If the plate deformation is too large, 

the elastic modulus
zE  of soil should be increased appropriately. If the contact stress is too large, the elastic 

modulus
zE  of soil should be decreased appropriately. The effect is not obvious to change yE . (3)The maximum 

value of vertical normal stress appears at about depth of 0.1m. As the value of yE  increases, vertical normal 

stress decreases. As the value of 
zE  increases, vertical normal stress increases obviously. Various factors should 

be considered to choose the appropriate soil parameters. The above conclusions provide certain theoretical 

foundation for further dynamic analysis and research of road surface. 
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