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Abstract: The attractor hypothesis states that knowledge is encoded as topologically-defined, stable 
configurations of connected cell assemblies. Irrespective to its original state, a network encoding new information 
will thus self-organize to reach the necessary stable state. To investigate memory structure, a multimodular neural 
network architecture, termed Magnitron, has been developed. Magnitron is a biologically-inspired cognitive 
architecture that simulates digit recognition. It implements perceptual input, human visual long-term memory in 
the ventral visual pathway and, to a lesser extent, working memory processes. To test the attractor hypothesis a 
Monte Carlo simulation of 10,000 individuals has been run. Each simulated learner was trained in recognizing the 
ten digits from novice to expert stage. The results replicate several features of human learning. First, they show 
that random connectivity in long-term visual memory accounts for novices’ performance. Second, the learning 
curves revealed that Magnitron simulates the well-known psychological power law of practice. Third, after 
learning took place, performance departed from chance level and reached a minimum target of 95% of correct hits; 
hence simulating human performance in children (i.e., when digits are learned). Magnitron also replicates 
biological findings. In line with research using voxel-based morphometry, Magnitron showed that matter density 
increases while training is taken place. Crucially, the spatial analysis of the connectivity patterns in long-term 
visual memory supported the hypothesis of a stable attractor. The significance of these results regarding memory 
theory is discussed. 
Keywords: Memory; Numerical cognition; Neural network; Chaos; Attractor; Magnitron; Monte-Carlo 
simulations.  

1. Introduction

1.1 Objectives 
The present paper falls within the long tradition of cross-fertilizing ideas between artificial intelligence, 

cognitive neuroscience and psychology. The purpose was to investigate learning-induced structural changes in 
memory. To this end, we developed a multimodular architecture that models human learning of Arabic digits. The 
simulations were to provide evidence supporting the hypothesis that information stored in visual memory creates 
a neural structure that can be formalized as a metastable attractor. The huge constraints we imposed on our 
simulations were that the results should be consistent with both the psychology findings at the behavioral level 
and the key neuroimaging finding that learning modifies grey and white matter density in biological neural 
networks [1-2]. These changes at the macroscale result from neural plasticity occurring at a microscale [3] and 
underpin the development of cognitive performance. We set the target that our model of memory formation should 
replicate the fact that the structure of the brain is modified by experience and that matter density increases in the 
relevant connections. This work thus constitutes an attempt at offering a theoretical ground that accounts for 
behavioral and biological findings. Many excellent models of mathematical cognition are available [4-6]. These 
studies, though, address a different question than ours, usually focusing on the mathematical knowledge acquired, 
rather than the impact of learning on the structure of memory in the visual areas. Other works have already 
addressed separately, and with great depth, the dynamical properties of neural networks and their applications [7-
10]. Here too these works address a different question than the structure of memory at a macroscale in relation to 
the acquisition of mathematical knowledge. Finally, much research has focused on optimizing learning algorithms 
for machine learning [11]. These investigations too are beyond our objectives for we aimed at replicating human 
behavior, including its weaknesses, rather than optimizing learning.  Our model uses chaos theory as a framework 
to bridge the gap between different disciplines interested in the changes of neural structure following the formation 
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of new memories. We have chosen to simulate digit recognition for it is of relevance not only to neuroscientists 
and psychologists but also to educational scientists. 

 
1.2 Biological background 

The main achievements of humanity, such as putting a man on the moon or building a tunnel under the sea, are 
due to scientific knowledge. Mathematics, as the language of science, constitutes the pillar of modern society. 
Understanding the development of mathematical skills up until expert stage is thus crucial to psychology and 
education. It is now established that the ability to count stands at the core of mathematical intuition [12]. Various 
lines of evidence indicate that our counting ability is a skill inherited from animals [13-15]. That basic capacity to 
estimate quantities, though useful for performing many basic tasks, is not sufficient to allow the development of 
formal mathematical thinking. Advanced skills require good mastering of a symbolic format that can be acquired 
only through years of training. The learning process will ultimately enable the emergence of an abstract form of 
thinking [16]; the hallmark of expertise in mathematics. Because of the many years of training required to achieve 
mastery, mathematics has naturally been made the core component of scientific education. Naturally, the first 
training stage in mathematics consists in learning Arabic digits. The present paper uses a multimodular neural 
network architecture to simulate digit recognition. The model, largely informed by biological data, is used to test 
the hypothesis of neural attractors. 

Recognition of Arabic digits relies on a learning-dependent network involving several brain sites [17]; each site 
performing a specific cognitive function. Arabic digits have long been hypothesized to be stored in the ventral 
visual stream [18-19]. A recent study using metanalysis techniques has confirmed the theoretical predictions by 
identifying the location of the so-called number form area in the inferior temporal gyrus [20]. The temporal site 
stores representations of the physical stimuli but the semantic representation of numbers is held in the intraparietal 
sulci [21]. These parietal loci contain populations of neurons whose activity are tuned to respond to natural 
numbers [22]. An early stage in mathematical development consists in forming a network that connects Arabic 
digits in the number form area to the appropriate cell assemblies in the parietal sites. The connection is likely 
underpinned by the vertical occipital fasciculus, for it is the only major fiber tract connecting the ventral to dorsal 
visual streams [23]. Once a number is recognized by the visual stream, semantic information in the interparietal 
sulci can be consciously manipulated through working memory which is implemented as a frontoparietal loop [24]. 
A model of number mining thus requires an architecture made at least of a retinal input, a number form area to 
encode digits, a site to represent quantities, and a frontal site that enables the recognized digit to be consciously 
accessible.  

Performance primarily relies on our ability to recognize numbers. Thus, how representations are stored in 
memory is a process of paramount importance. Long-term memory storage, referred to as learning in psychology 
literature, is a purely biological process. The key mechanism underpinning learning is experience-dependent neural 
plasticity [25]; A general definition of which is the ability of the brain to modify its structure. The process is 
different from short term memory in that it requires the synthesis of proteins and thus involves a genetic component 
[26]. At the cellular level, neurons activate genes to build new connections [3]. Learning thus constitute a perpetual 
reconstruction and adaptation of the brain’s neural networks. There is now ample evidence of such reorganization 
of the neural circuitry [27-28]. Two features of experience-dependent neural plasticity are crucial to characterize 
the biological essence of long-term memory. First, learning generates more connections, which implies more 
neural tissue. This reasoning has been empirically confirmed by neuroimaging studies comparing matter density 
in targeted brain regions. For example, by using voxel-based morphometry, it has been shown that experts in 
mathematics display higher density matter than novices in areas performing mathematical tasks [29]. Second, 
learning is a synapse-specific process [30]. The consequence is that information is encoded into well-defined 
functional modules [31-32]. Visual objects are thus stored in the ventral pathway of the visual system [33]. 
Location specific memory encoding of perceptual knowledge has been evidenced for many objects including faces 
[34-36], cars [37] and chess patterns [38]. Altogether, the available evidence shows that visual objects are stored 
as highly-connected cell assemblies in location-specific neural networks [39-40]. The number form area [18,41], 
storing Arabic digits, constitutes one instance of this learning process. 

If the brain location wherein numbers are stored is well-established, the biological structure of memory within 
the site remains an open debate. Many models in psychology circumvent the problem by considering knowledge 
at the symbolic level; that is, memory stores and manipulates internal representations of letters or words. If such 
level of description is sufficient to explain most of the behavioral data, it is far from acceptable if we want to reach 
an understanding of memory that would integrate both behavioral and biological data. In the present study we take 
a computational approach inspired from physics. The brain is a dynamical system that has the unusual ability to 
self-organize its internal structure. It is thus not surprising that behavior and brain display chaotic properties [42]. 
A key feature of dynamical systems is the so-called attractors. Attractors are originally defined as the set of values 
a system tends to take over time (for a more technical definition see [43]). In this context, the phase space is the 
space all the possible states of the system. With time elapsing, and regardless of its original position in the phase 
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space, the system will end in the attractor subspace. Considering any cell assembly [44], the phase space 
corresponds to the set of values that all neurons and their connections can take [45]. If the attractor is the specific 
state of neural activity that encodes a memory to be acquired then all learning experiences should lead to such 
state. This hypothesis is tested with a multimodular artificial neural network. 

 
1.3 Magnitron  

Magnitron, in its basic form, was introduced to simulate recognition of analogue and symbolic numerosities 
[46]. This initial implementation was oriented towards replicating human performance but left little room for 
biological validity and interpretation. The present version of Magnitron has been developed to account for 
behavioral results while meeting biological constraints. 

Magnitron is composed of four modules, see Figure 1. We shall examine the structure of each module in turn. 
(1) Retina module. This module implements the perceptual input of the cognitive architecture. The retina can 

be conceptualized as a matrix of cells capturing light. In the present article, we will consider all cells as passive 
receptors. The artificial retina is an 8 x 8 matrix that codes inputs as 0 and 1 and converts the 8 x 8 binary input 
into a 64-element vector. The top of Figure 2 shows the coordinate system that is used for the reconversion into a 
64-element vector. The bottom panel illustrates conversion with the digit ‘5’. It is worth noting that conversion is 
a one-to-one mapping so that topological relationships are conserved. No learning is taking place in the retina 
module. The 64-element vector output is directly fed to the Ventral Visual Stream. 
 

 
 

Figure 1. Architecture of Magnitron 
 

 
Figure 2. Mapping of vectors. 
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(2) Ventral visual stream module. The ventral visual stream implements the flow of information between the 
retina and, crucially, the site in the temporal cortex that performs recognition. It is implemented as a feed-forward 
neural network with three layers. The input layer is made of 64 input units, i ∈ ℤ{1;64}. These units do not have 
a transfer function so the input, noted Ii, is directly fed into the network. The hidden layer was made of 18 hidden 
units, j ∈ ℤ{1;18}. Finally the output layer was made of 10 units, k ∈ ℤ{1;10}. The number of hidden units was 
chosen to ensure good performance while keeping calculations within available computational power. All units in 
the hidden and output layers were designed with a tan-sigmoid transfer function. Equations 1 and Equation 2 below 
indicate how the output of each layer is calculated as a function of its input. For the hidden layer, all weighted 
inputs Ii are summed to provide I; which is used to compute the output signal of each hidden unit, noted Gj, as 
indicated in Equation (1). The value of I is specific to each unit j as it depends not only on the 64 input values i 
but also on the specific weights, noted Vji, of the connections between unit j and every unit in the input layer. 
Similarly, the input of each unit, in the output layer is the sum of the output value from all hidden units multiplied 
by the specific weight, noted Wkj, representing the strength of the connection between hidden unit j and output 
unit k. That sum, termed J, is used to calculate the final value of each unit in the output layer, noted Ok with 
Equation (2).  

 
𝐺𝐺𝑗𝑗  =  2

1+𝑒𝑒−2𝐼𝐼
− 1,   for j∈ ℤ {1,18} with 𝐼𝐼 =  ∑ 𝑉𝑉𝑗𝑗,𝑖𝑖 . 𝑖𝑖64

𝑖𝑖 = 1                                                  (1) 

𝑂𝑂𝑘𝑘 =  2
1+𝑒𝑒−2𝐽𝐽

− 1,   for k∈ ℤ {1,10}, with  𝐽𝐽 =  ∑ 𝑊𝑊𝑘𝑘,𝑗𝑗 .𝐺𝐺𝑗𝑗18
𝑗𝑗 = 1                                                  (2) 

 
After the presentation of a stimulus in the input layer, the signal is cascaded to, first, the hidden layer and then 

to the output layer. The values of the output units reflect the degree at which symbols are recognized. For example, 
an output vector of O = [0 0 1 0 0 0 0 0 0 0] indicates that the symbol 3 was recognized and an output vector of O 
= [0 0 0 0 0 0 1 0 0 0] indicates that the symbol 7 was recognized. The ventral visual stream is the repository of 
knowledge; as such it is the target of the learning process. 

Long-term memory storage requires a significant amount of time in biological networks for the rewiring of the 
network is controlled by complex mechanisms that include genetic activation. Newly-created synapses can be both 
inhibitory and excitatory. As a proxy, we consider that a weight of zero is the absence of a synapse and a weight 
different than zero is a synapse. If the weight is positive the synapse is excitatory and if the weight is negative the 
synapse is inhibitory. Within this framework, the adjustment of the weights in the matrix reflects the change in 
distribution of axons and number of synapses while the organism is learning.  

(3) Intraparietal Sulcus module. This is a feedforward network where 10 units of the input layer are connected 
one-to-one to the 10 units of the output layer. All output units are defined by a hard limit that outputs zero if the 
input signal is higher than 0.5. This module implements the connection between the number form area in the 
ventral visual stream and the intraparietal sulcus where the semantic representation of quantity is held.  

(4) Fronto-Parietal module. Working memory is biologically implemented as a frontoparietal loop. Neurons in 
the frontal cortex constantly refresh neural signal in posterior areas [47]. Fine grained analysis of animal data 
indicates the centrality of this network for the processing of digits [24]. The output unit of the module encodes the 
information that is stored in working memory and consciously accessible. This process is implemented as a 
competitive neural network of two layers that will select only the most active output unit to put its ‘value’ in 
working memory. 

 
 2. Methods 

 
Magnitron was implemented using the neural network toolbox from Matlab® [48]. A Monte Carlo simulation 

was performed to test whether numerical knowledge is encoded as an attractor in long-term visual memory. We 
simulated 10,000 novices. For each novice, the weights in the ventral visual stream were randomly initialized using 
a uniform distribution with a value range [-1; 1]. Magnitron was then trained to recognize the ten Arabic digits (0, 
1, 2, 3, 4, 5, 6, 7, 8, and 9). The following parameters were set for the training session of the ventral visual stream. 
Performance was measured by the mean square error, rated c. This is the most common indicator of performance 
in neural networks. The mean square error is the squared difference between the expected and actual output 
averaged across all units. A mean square error with a value of zero indicates that the stimuli is perfectly processed 
and recognized. The performance criterion c used to stop performance was c = 0.0001; which implies that the 
training would stop as soon as the mean square error of the output of the ventral visual stream would be equal or 
inferior to 0.0001. We also set a minimum learning gradient of η = 10-7. The learning gradient is the minimum 
amount by which the ventral visual stream module’s weight will be changed. A limit in the number of the 
maximum of epochs for learning was set to 200. 
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2.1 Stimuli and training cycle 
Ten Arabic digits were coded as 8*8 matrices. Figure 3 below shows the stimuli used for the training of 

Magnitron. The corresponding 10 outputs were paired with their corresponding 64-element input vectors for 
training in the ventral visual stream. 

  

 
Figure 3. Stimuli sample used for the simulations 

 
As indicated in the above, learning takes place in the ventral visual stream. Supervised learning was performed 

with the Levenberg-Marquardt algorithm [49-50], see Equation 3. The Levenberg-Marquardt algorithm changes 
the weight matrix x as a function of the difference between the expected and actual output. Considering Equation 
3, J is the Jacobian of the matrix under consideration, I is the identity matrix, µ is the gradient, and e is the error. 

 
𝑥𝑥𝑘𝑘+1 =  𝑥𝑥𝑘𝑘 − [𝑱𝑱𝑇𝑇. 𝑱𝑱 + 𝜇𝜇𝑰𝑰]−1. 𝑱𝑱𝑇𝑇 . 𝑒𝑒              (3) 
 
The cycle of presenting an input vector, calculating the output, and adjusting the weight matrix, is termed an 

epoch. The epoch, in particular the phase of adjusting weights, implements the biological process of building up 
the network by creating new synapses. It thus represents a good artificial candidate to simulate a well-identified, 
biological process. 

 
2.2 Memory attractor 

Considering that both biological and artificial networks learn by building or modifying connections, 
connectivity was used to examine whether a specific pattern of connectivity underpins performance. As indicated 
in the above, non-zero weights reflect the existence of either an excitatory or inhibitory synapse. In line with this 
biological reasoning, we aggregated the absolute values of positive and negative connections to calculate the 
average matrix of connections. For any simulated individual n, we thus have two matrices characterizing their 
long-term memory structure. One matrix is the weight matrix Vji

n that reflects the weight of the connection between 
the ith input units and jth hidden units for novice n. The other matrix, 𝑊𝑊𝑘𝑘𝑘𝑘

𝑛𝑛 , is the weight of the connection between 
the jth units in the hidden layer and the kth units in the output layer for novice n. Equation 4 shows how the density 
matrix, D1  =  �𝑑𝑑1,𝑖𝑖𝑖𝑖�, was calculated for the weights connecting the input units to the hidden units and Equation 5 
shows the calculations for the density matrix, D2  =  �𝑑𝑑2,𝑖𝑖𝑖𝑖� , between the hidden and output units. Learning can 
be quantified by calculating the average change in connectivity in the whole network; which basically translates 
mathematically as adding the averaged absolute weights all two density matrices. 

 
𝐷𝐷1,𝑖𝑖𝑖𝑖  =  1

𝑁𝑁
∑ �𝑉𝑉𝑗𝑗𝑗𝑗𝑛𝑛�𝑁𝑁−1
𝑛𝑛 = 0                    (4) 

 
with 𝑖𝑖 ∈ ℤ{1,64}, 𝑗𝑗 ∈ ℤ{1,18} and N the number of novices, here N = 104 

 
𝐷𝐷2,𝑖𝑖𝑖𝑖  =  1

𝑁𝑁
∑ �𝑊𝑊𝑘𝑘𝑘𝑘

𝑛𝑛 �𝑁𝑁−1
𝑛𝑛 = 0               (5) 

 
with 𝑗𝑗 ∈ ℤ{1,18}, 𝑘𝑘 ∈ ℤ{1,10} and 𝑁𝑁 =  104 

To disentangle the memory structure of each output units, the density matrices for each output unit, noted 
𝑫𝑫𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑘𝑘 , with k the index of the unit, was computed by adding the weights of the second density matrix that relate 

to unit k only to the density matrix D1. 
 
𝑫𝑫𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑘𝑘  =  �𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 � with 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘  =  𝑑𝑑1,𝑖𝑖𝑖𝑖 + 𝑑𝑑2,𝑗𝑗𝑗𝑗 =  1

𝑁𝑁
∑ ��𝑉𝑉𝑖𝑖𝑖𝑖𝑛𝑛� + �𝑊𝑊𝑗𝑗𝑗𝑗

𝑛𝑛��𝑁𝑁−1
𝑛𝑛 = 0                                                 (6) 

 
Density matrices not only quantify the degree of connectivity but also offer a mean to analyze the distribution 

of weights. Since they are the phase space that reflects the degree of knowledge stored by the network. If a pattern 
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of connectivity is present in the phase space for expert and absent for novices, then we could conclude that the 
learning process tends to reach a specific pattern of connectivity. To test this assumption, we used Global Moran 
I index of spatial autocorrelation. This statistical test has been developed to determine whether elements in a spatial 
map are related to each other, thus showing if they are distributed randomly or clustered in specific locations. 

The Global Moran I index for matrix D1 (resp. D2) is calculated using the formula: 
 
𝐼𝐼𝐷𝐷 = 𝑁𝑁

𝑊𝑊
∑ ∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚 (𝑑𝑑𝑚𝑚−𝑑𝑑�)(𝑑𝑑𝑛𝑛−𝑑𝑑�)

∑ (𝑑𝑑𝑚𝑚−𝑑𝑑�)2𝑚𝑚
              (7) 

 
where dm and dn are elements of matrix D1 (resp. D2), 𝑑̅𝑑 is the mean value of all elements in D1 (resp. D2), N 

is the total number of elements in D1 (resp. D2), wmn is the element of the hollow matrix of spatial weights and W 
is the sum of all these elements. 

 Moran’s I values in the novice and expert density matrices will reveal the degree of randomness in the 
distribution of weights. The neural attractor hypothesis predicts no spatial autocorrelation in the novice matrices 
for the weights will be assigned randomly. But, it predicts spatial autocorrelations to be revealed in the expert 
matrix as the attractor hypothesis predicts location-specific connections to encode knowledge. Both results 
combined would demonstrate that values in a network converge towards a specific pattern of connectivity: the 
attractor.  

 
3. Results 

 
We shall present our results in four sections. The first section consists in reporting the characteristics of the 

simulations at the novice stage. We report density matrices and compare connectivity across the input and output 
units to ensure that randomization of the weight matrix was uniform. In the second section, we report on the 
learning process of the 10,000 simulations. A mathematical model of the learning curves is then described. In the 
third section, we report the characteristics of the network after learning has taken place. We show that Magnitron 
replicates findings at the biological level. Finally, by analyzing the topological distribution of connections we test 
the existence of an attractor. 

 
3.1 Novices’ performance 

Following the randomization procedure, the average density was M = .500 (SD = .003) for layer 1 and also M 
= .500 (SD = .003) for layer 2. The 10,000 novices performed poorly in recognizing digits (9.97%; SD = 1.75%). 
Their performance cannot be distinguished from chance performance, t(9999) = -.33, p = .74. This result confirms 
that connectivity in the network was random. Figure 4 shows the average connectivity of the input and output units 
averaged across their connection to the common hidden layer. As Figure 4 suggests, connectivity was similar 
across units of the same layer, an intuition that is statistically confirmed for both layer 1 (F(1,63) = 1.087, p = .304, 
MSE < 0.01) and layer 2 (F(1,9) = 1.723, p = .087, MSE < 0.01).  

  

 
Figure 4. Average connectivity of the units in the first layer 
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3.2 Learning 
Figure 5 shows the evolution of the performance criterion, mean error of the network, as a function of the 

number of epochs as averaged across the 10,000 simulations. Regressing the number of epochs to the average 
performance, as measured by mean error, provides an equation that significantly accounts for 92.5% of variance, 
the best fitting function was Performance = 11.247*epoch-3.64, F(1, 34) = 408.486, p < .001.Evolution of 
performance is thus adequately captured by a power law. Though all 10,000 simulations, learners reached expert 
stage in 12.169 epochs (SD = 3.383) on average. There is a noticeable variance in the number of epochs needed to 
reach expertise, ranging from 7 to 56 with a median value of 11. 

  

 
Figure 5. Learning curves 

 
3.3 Experts’ performance 

After learning, the 10,000 simulations yielded an average recognition performance of 99.71% (SD = 1.75%). 
Learning has successfully changed the pattern of connectivity. Figure 6 displays the averaged connectivity for 
each unit of the input and output layers. In contrast with the connectivity pattern of novices, connectivity at the 
expert stage is not evenly distributed across units. Units in layer one have an average connectivity of M = 0.507 
(SD = .006) but the distribution is not even across all units, F(1,63) = 96.97, p < .01, MSE < 0.01. The mean 
density in connectivity of layer 2 is M = 0.726 (SD = 0.040). Similarly, it is not evenly distributed, F(1,9) = 1013.96, 
p < .01, MSE < 0.01. These two results constitute key evidence that learning has significantly changed the pattern 
of connectivity within the network.  

The overall density of the network has undergone a significant change during training. The average density of 
the first layer has significantly increased with training as indicated by an analysis of variance comparing the mean 
density input units across connections to the hidden layer t(1151) = -35.91, p < .01. Similarly, the analysis of 
variance on output units connectivity indicates that the substantial increase in average density of the second layer 
is significant t(179) = -75.92, p < .01. The question remains of whether these changes display a topological pattern.  

  
3.4 Memory structure 

The topological reorganization of the network can be seen in the density matrices D1 and D2, see Figure 5. The 
left column pictures D1 density matrices with the input layer in abscissa and the hidden layer in ordinate. The right 
column depicts the density matrices between the hidden (abscissa) and output layers (ordinate) for D2. The 
connectivity map before training reflects the novice stage, wherein weights have been allocated randomly. The 
novices’ mean pattern of connectivity is pictured in the top density matrices. These matrices merely reflect the 
random distribution of weights over the 10,000 simulations and as such reveal no internal structure. After training 
there is a clear trend indicating that some pathways between units are more favored than others. The pattern of 
connectivity as revealed by the two matrices at the bottom of Figure 5 shows in topological maps the averaged 
connectivity matrices that the 10,000 simulated experts use to recognize and successfully classify the 10 basic 
digits. 

Moran’s I statistics were used to estimate the amount of spatial stratification for each connectivity matrix. The 
tests were not significant for both the first layer (observed = -0.001562738, expected = -0.0008688097, sd = 
0.001519137, p = 0.6478213) and the second layer (observed = -0.008058135, expected = -0.005586592, sd = 
0.006730431, p = 0.7134556) of the novice density matrices. But, both expert matrices yielded statistically 
significant spatial distributions, showing that they display a significant stratification of the distribution of 
connectivity over space; for Layer 1 (observed = 0.0853238, expected = -0.0008688097, sd = 0.00151734, p < .01) 
and for layer 2 (observed = 0.07809298, expected = -0.005586592, sd = 0.00676179, p < .01). The patterns of 
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connectivity of the expert matrices visible in Figure 7 are not the object of a random distribution but reflect spatial 
autocorrelations. The attractor hypothesis is statistically supported. 

 

 
Figure 6. Average connectivity of the units in the second layer 

 
 

 
Figure 7. Matrices of connectivity of novices and experts 

 
4. Conclusion and discussion 

 
To test whether attractors are a general feature of visual memory we simulated learning processes with a multi-

modular artificial neural architecture in 10,000 virtual human agents. The pattern of results validates our model, 
Magnitron, as a viable biologically-inspired model of digit recognition. Magnitron simulates many key features of 
human learning. First, the low level of novices’ performance is shown to be adequately accounted for by 
randomized connectivity in the ventral visual stream. Second, experts’ performance is simulated with accuracy. 
Third, the model simulates the learning curve of human agents showing its ability to replicate not only performance 
but also its evolution over time. Finally, in addition to simulating human behavior, we found key support for our 
attractor hypothesis. We shall discuss these results individually for each constitutes a piece that helps solving the 
puzzle of human memory. 
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Magnitron accounts for novice’s performance in a digit recognition task by modelling their visual long-term 
memory as a network of random connections. This poses a theoretical problem as there could be no random 
connectivity in biological networks for it would imply a biological cost to serve no function. The question posed 
is therefore the interpretation of the randomized connectivity in the ventral visual stream module. Prior to the 
learning of numbers, neurons are engaged in performing other tasks. For example, neurons in the ventral visual 
areas are recruited early in the course of development to store the representations of many different types of items 
such as faces, building, and other everyday objects [51]. So, when the time comes to learn digits, the ventral visual 
stream is made of pre-existing connections. This pre-existing network, though, is not wired to properly process 
digits. Random connectivity in Magnitron should be interpreted as connections that do not contribute to digit 
recognition but reflect existing organization in the ventral visual stream of the individual. In our model, the state 
of knowledge of the simulated individuals is determined by the 1,332 connections (64x18 + 18x10) of their visual 
long-term memory. These connections, randomized with a uniform function, do reproduce the level of 
performance displayed by novices. 

The learning curves yielded by the simulations have been shown to be best modelled by a power function. A 
function that has been long known to model human skill acquisition [52]. Magnitron thus simulates a key finding 
in the literature on learning and expertise acquisition. The learning curves also revealed that novices displayed a 
significant amount of variance in reaching expert status; a finding further confirmed by the fact that the range of 
epochs needed to reach expertise across the 10,000 novices can vary from 7 to 56 epochs. Our simulations thus 
replicate the fact that the time necessary to reach expertise can vary by a factor up to 8 [53]. The number of epochs 
necessary to reach expertise is determined by the distance between the initial position of the agent in the phase 
space and the attractor. In this context, the difficulty with which an individual performs a task reflects the chance 
that the neural circuitry necessary to perform that task has been modified by previous learning experiences.  

The results of simulations at the expert stage confirm that learning has been efficient. The 10,000 simulated 
individuals perform significantly better when they have reached the expert stage as compared to their performance 
as novices. Comparisons between novice and expert density matrices has indicated that the expert network is 
characterized by higher connectivity. This result is in line with neuroimaging studies using voxel-based 
morphometry that tested the same hypothesis in biological networks [29]. Magnitron thus not only replicates 
human performance but also simulates a key result at the biological level. Analyzing the spatial distribution of the 
expert network has revealed that the network has self-organized into a well-defined, topologically-determined 
pattern of connectivity. Such pattern, encapsulating knowledge in visual long-term memory, is an attractor. This 
finding is crucial in that it shows the attractor emerged as a consequence of learning. In this context the increasing 
amount of time necessary to maintain a constant rate of progress in learning a task is basically explained by the 
fact that the fine-tuning of the connectivity pattern requires minute adjustments. The many thousands of training 
hours reported to reach expertise ([54]) are thus justified by the necessity to adjust the relative weight of millions 
of neurons in biological networks. This logic holds true as much for biological organisms as it does for artificial 
systems. Behavioral, neuroimaging, neurobiological and now computational evidence suggest that, to encode 
information in the long term, neural networks converge to create a specific pattern of connectivity. The simulations 
in this paper have demonstrated that new knowledge is encoded in the phase space of memory as an attractor.  

The interpretation of the present work is subject to limits. First is the fact that we used only one single topology 
and set of parameters. Future works will explore the manipulation of the number of hidden layers and learning 
parameters to examine how these variables affect the structure of the attractor. The results presented here though 
constitute a first step towards the demonstration that structural changes in memory reflect an attractor in the phase 
space of visual long-term memory. A second limit is the fact that choices regarding the learning functions and 
transfer functions might not reflect biological complexity to its full extent. It is worth reminding that our purpose 
was to model changes at a macroscopic level, rather than mesoscopic or microscopic scales. In this respect the 
model has been highly successful in replicating the increase in matter that is generated by long-term memory 
encoding.  One main limit of the present simulations is the available processing power offered by current 
technologies. Computers, however powerful, do not allow simulating the number of neurons that the brain contains 
and thus a degree of simplification is necessarily involved in any neural network simulation. Even though our 
neural network simulations are perfectly in line with biological evidence at the cell and brain level to indicate the 
presence of attractors in memory, the concept remains a theoretical assumption that will find its ultimate proof 
only with appropriate biological imaging. A second, related limit is that the attractor revealed in the present study 
is necessarily a simplification compared to an attractor in biological networks. Memory attractors in biological 
systems might involves millions of neurons. The typical pattern of connectivity of a memory attractor in biological 
system might be highly complex and thus display properties that our model does not capture. A third limit is that 
the difference between biological networks and the simulation is that, in biological systems, the number of neurons 
varies from one individual to the next. Hence, when considering different biological agents, we actually consider 
different neural structures and thus attractors should differ across individuals.  

Beyond accounting for human behavior, Magnitron shows that learning in artificial and biological processes 
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display similar features insofar as the mechanisms that are modelled depend upon the same principles of 
connectivity. The present paper crucially contributes to our understanding of human learning processes by 
introducing chaos theory in the fields of learning and expertise acquisition. It has demonstrated, through a Monte 
Carlo simulation that the behavioral and neuroscientific features of learning in the early stages of expertise 
acquisition in mathematics are accounted for by the notion of attractors. 
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