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Abstract: Analytical approaches, if possible, are suggested for saving the simulation time in the design stage of 
the electrical machines. This benefit is highlighted when the optimization issues including too many iterations are 
desired. Hence, this paper presents a 2-D analytical model for magnetic field distribution based on the sub-domain 
method in a slotless double-sided axial flux permanent-magnet (PM) brushless machines (AFPMBMs) with 
internal-rotor-external-stators. According to this method, the machine cross-section is divided into the appropriate 
number of sub-regions and the related partial differential equations (PDEs) extracted from Maxwell equations are 
formed for magnetic vector potential in each sub-region. Applying curl on the obtained results leads to calculating 
the magnetic flux density components in each sub-region. Based on the superposition theorem, the analytical 
procedure is utilized in the two separate steps where in the first step the magnetic flux is originated by only PMs 
with various magnetization patterns (i.e., parallel, ideal Halbach, 2-segment Halbach and bar magnet in shifting 
magnetization patterns) and the armature currents are zero. In the second step, all PMs are inactivated and only 
armature currents affect the magnetic flux distribution. Finally, the obtained analytical results are compared with 
those of the Finite element method (FEM) to confirm the accuracy of the proposed analytical model. The extracted 
results reveal the benefit of the analytical model for replacing instead of the FEM to predict the magnetic flux 
density component in the presented AFPMBMs in a shorter time. 
Keywords: Analytical design; Axial flux motor; Maxwell equations; Permanent-magnet; Sub-domain technique.  

 
 
1. Introduction 

 
At the moment, electric machines’ presence and their vast kinds of applications in industries are undeniable. 

Among them, axial flux permanent magnet machines (AFPMs) are more preferred on compactable machines with 
high torque/weight ratio. From the perspective of structure, we can divide them into single-sided, double-sided 
and multi-stages [1]. The double-sided structure includes external-rotor-internal- stator (TORUS) and internal-
rotor-external-stator (AFIR) in terms of rotor and stator positions and each one has its own advantages. Extensive 
researches have been carried out over these structures that can be classified as [2]: 

1) Analytical or numerical models (0-D, 1-D, 2-D, 3-D). 
2) PMs configurations such as surface-mounted, surface-inset, buried PMs, spoke PMs, etc.; 
3) Magnetization patterns such as parallel, ideal Halbach, 2-segment Halbach, bar magnets in shifting directions, 

patterns, etc. 
4) Magnetic fields quotations formulated in Cartesian, cylindrical or polar coordinates; 
5) Machines’ structure such as slotted, slotless, coreless, etc. 
6) PM shapes such as rectangular, trapezoidal or circular. 
7) Considering or not considering the saturation effect. 
8) Magnetic field calculations based on PMs, the armature reaction or both of them. 
Analytical and numerical models were developed for analyzing the electrical machines. For instance, In [3], the 

authors tried to analyze the 3-D magnetic field distribution by using the Fast Fourier Transform (FFT) where the 
3-D analytical model including more complexity compared with other analytical models. Authors in [4] mentioned 
that in the finite element method, a large number of air areas considered surround the conductors in order to satisfy 
the boundary conditions at infinity. They developed a hybrid finite element/boundary element (FE/BE) method to 
avoid such areas aiming to decrease magnetic field calculation. In [5] calculation of 3-D magnetic fields by using 
integral transformation has been developed. The scalar magnetic potential is obtainable considering the discrete 
Fourier transformation and the Hankel transformation over angle coordinate and radial coordinate, respectively. 
In [6], a 3-D magnetic field solution describes an enhanced three dimensional (3-D) field reconstruction method 
for modeling an axial flux permanent magnet machine.  
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As mentioned, magnetic field computation in an electric machine may be achieved using the analytical and 
numerical models [7-55]. For instance, the analytical models were investigated in [8-19, 21-27, 29, 32-35, 37, 40, 
44-48, 50-53] and the numerical ones were explained in [7], [36],[39], [41],[42], [49]. The main drawback of the 
numerical method is related to their high computational burden and more simulation time. So, some novel methods 
such as image method [20], [38] and field reconstruction method [28], [30]-[31], [49] aiming to reduce the amount 
of calculation of FEM method, have been developed in the previous studies. However in [20], the authors claim 
that their results are more realistic than the quasi-3-D method, but no comparison is reported. In quasi-3-D method 
[11],[12], [14], [16], [29], [37], [40] it is commonly assumed that the machine is composed of several linear 
machines. Several cutting planes are chosen and analyzed from the machine and the total results of the machine 
are obtained by adding the extracted results of each plane. In [11] and [12] the analytical methods are studied for 
TORUS-type, in cylindrical coordinate and for single-sided structure with Halbach and axially magnets 
arrangement, in polar coordinate, respectively that the benefits of the analytical model for saving time compared 
with the numerical ones were described. In [14] and [16] authors investigated analytical methods for single-sided 
slotted stator structure in cylindrical coordinate. In [29], Parviainen et al. obtained flux density distribution in the 
air gap region considering stator slot openings. The analytical method is studied for a slotted stator AFIR-type PM 
machine. Alipour et al. [37], employed Schwartz-Christoffel transformation in order to calculate circumferential 
and perpendicular components of the air gap flux density due to the PMs and the armature current.  Tiegna et al. 
[40], considered and extended a function that reveals radial dependence of the magnetic field and it is applicable 
for any type of PMs. It is been framed by composing FEM and multi-slice AM methods which are able to consider 
the end effects of the machine. 2-D analytical method also investigated in [8], [10], [15], [17], [19], [21], [24], 
[26], [33-35], [44-48], [50], [53]. In [8], the authors investigated a 2-D analytical method for magnetic field 
calculations in PMs and air gap regions for a single-sided structure in cylindrical coordinate [10], Cartesian 
coordinate [54] and for a double-sided slotted stator in [15]. The 2-D analytical method also was described for 
slotted stator TORUS-type [19, 24], for calculation of cogging torque and EMF [21]. Also, this analytical model 
is employed for calculating torque, EMF and inductances for a slotted stator with surface-inset PMs [26]. Besides, 
the 2-D analytical method also investigated different kinds of machines such as radial flux [33], linear machine 
[35], flux switching machine with double-sided structure [43] and single-sided structure with two flux return plates 
[44]. Zhu et al. [34], studied an accurate sub-domain model for a slotted stator structure with radial and parallel 
magnetization patterns in polar coordinate.  

The considered papers reveal that the analytical models, if possible, are preferred due to the following three 
reasons: 

1) The analytical models are faster than the numerical ones which are essential for the optimization issues with 
numerous iterations.  

2) The analytical method provides a better understanding of the system. It helps to comprehend governing 
equations in the electrical machines. 

3) The analytical model is more flexible for modifying motor specifications, such as the dimensions of motor 
or the number of PMs, in spite of the numerical methods which changing the specifications requires remodeling 
the machine. 

It is necessary to mention that, some authors of the analytical models assumed infinite permeability for cores to 
simplify the analytical model that leads to having no sense about the magnetic flux density distribution in the cores 
[7], [22], [33]. Also, some authors investigated just PM effects on the magnetic field distribution and the effect of 
armature currents was not considered [49],[52], or the authors analyzed the effect of armature currents and the PM 
effects were not described [35], [55]. Moreover, there is no explanation of various magnetization patterns in most 
of the previous researches. Therefore, finding an accurate analytical model for the electrical machine with finite 
permeability of cores is essential to predict the magnetic flux density due to PMs with various magnetization 
patterns and armature currents. 

The main contribution of this paper is related to defining an analytical model for the slotless AFPMBM under 
the study. In this study, the permeability of cores is assumed to be finite and both armature currents and PMs effect 
including various magnetization patterns, such as parallel, ideal Halbach, 2-segment Halbach and bar magnet in 
shifting magnetization patterns, are described to obtain the magnetic flux density components in each sub-region 
by employing the sub-domain technique and applying Maxwell equations. 

 
2. Methodology  

 
The electromagnetic problem initiates by invoking a set of assumptions to enable the analytical solution of the 

governing partial differential equations (PDEs) originating from Maxwell’s equations. Magnetization patterns are 
expressed in terms of their Fourier series expansion.  

In this paper, the formulation is based on the magnetic vector potential, which leads to a set of Laplace and 
Poisson equations. Based on the governing equations and a set of boundary conditions, a general solution is 
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assigned to each region [7]. The geometry of the presented slotless AFPMBM under the study, which consists of 
eleven sub-regions, is shown in Fig. 1. Noted that r, θ and z in polar coordinate are replaced respectively with z, x 
and y in Cartesian coordinate to model the motor under the study in the Cartesian coordinate. Also, this assumption 
leads to replacing the redial magnetization pattern with the parallel one. 
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Fig. 1. Cross-section and sub-regions of the slotless AFPMBM under the study 

2.1 List of assumptions 
The following assumptions are made for defining the proposed analytical model: 
1) End effects are ignored.  
2) In the case of 2D problems in Cartesian coordinates, magnetic vector potential, A, magnetization pattern, M, 

magnetic flux density vector, B, and current density vector, 𝑱𝑱 ,are described as follow: 𝑨𝑨 = [0, 0,𝐴𝐴𝑧𝑧(𝑥𝑥, 𝑦𝑦)]; 𝑴𝑴 =
�𝑀𝑀𝑥𝑥(𝑥𝑥),𝑀𝑀𝑦𝑦(𝑥𝑥), 0�; 𝑩𝑩 = �𝐵𝐵𝑥𝑥(𝑥𝑥, 𝑦𝑦),𝐵𝐵𝑦𝑦(𝑥𝑥, 𝑦𝑦), 0�; 𝑱𝑱 = [0, 0, 𝐽𝐽𝑧𝑧(𝑥𝑥, 𝑡𝑡)].  

3) All materials are isotropic. 
4) The media have finite relative permeability. 
5) The saturation effects are neglected. 
6) The motor has a slotless stator structure. 
7) Eddy current reaction field is neglected.  

 
2.2 Governing PDEs 

The related PDEs in all sub-region of the presented slotless AFPMBM can be defined as follow: 
 
−∇2𝑨𝑨 = 𝜇𝜇0𝜇𝜇𝑟𝑟𝑱𝑱 + 𝜇𝜇0∇ × 𝑴𝑴                                                                                                                                    (1) 
 
The above equation is employed into 2 separate steps for calculating the magnetic flux density vector in each 

sub-region. In the first step, the magnetic flux density is obtained by only PMs and armature currents are zero and 
in the second step, the magnetic flux density is originated due to only armature reaction and all PMs are inactivated. 
 
2.2.1 Magnetic flux density due to only PMs 

In this step, only PMs affect the magnetic flux density distribution in all sub-regions that leads to extracting two 
categories of the PDEs. The first group pertinent to all sub-regions except for PMs and the related PDEs in these 
sub-regions are Laplace equations that are defined as follows: 

 
𝛻𝛻2𝑨𝑨𝒊𝒊 = 0                         i={pe, ps, pw, pa, r, sa, sw, ss, se}                                                                            (2) 
 
Solving the following PDEs leads to predict the magnetic vector potential in each sub-region of this group as 

follows: 
 
𝐴𝐴𝑧𝑧𝑖𝑖 (𝑥𝑥, 𝑦𝑦) = ∑ (𝑎𝑎𝑛𝑛𝑖𝑖 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑖𝑖 cosh(𝛼𝛼𝑛𝑛𝑦𝑦))∞

𝑛𝑛=1 cos(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑖𝑖 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑑𝑑𝑛𝑛𝑖𝑖 cosh(𝛼𝛼𝑛𝑛𝑦𝑦)) sin(𝛼𝛼𝑛𝑛𝑥𝑥)  
                                                                                                                                                                            (3) 
 

where 𝛼𝛼𝑛𝑛 = 𝑛𝑛𝑛𝑛/𝜏𝜏𝑝𝑝    in which  𝜏𝜏𝑝𝑝 is pole pitch. 
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 The second group of equations is related to PMs sub-regions that the relevant equations are Poisson ones 
described as follows: 

 
∇2𝑨𝑨𝑃𝑃𝑃𝑃 = −𝜇𝜇0∇ × 𝑴𝑴                       PM={ppm, spm}                                                                                         (4) 
 

where 𝜇𝜇0 is free space permeability. Noted that in the sub-domain technique the magnetization patterns are defined 
based on their Fourier series expansions to calculate the tangential components, 𝑀𝑀𝑥𝑥, and normal components, 𝑀𝑀𝑦𝑦, 
as follow: 
 
𝑴𝑴 = 𝑀𝑀𝑥𝑥𝑎𝑎𝑥𝑥 + 𝑀𝑀𝑦𝑦𝑎𝑎𝑦𝑦                                                                                                                                              (5) 

𝑀𝑀𝑥𝑥(𝑥𝑥) = ∑ 𝑚𝑚𝑥𝑥𝑥𝑥 cos(𝛼𝛼𝑛𝑛𝑥𝑥)∞
𝑛𝑛=1                                                                                                                             (6) 

𝑀𝑀𝑦𝑦(𝑥𝑥) = ∑ 𝑚𝑚𝑦𝑦𝑦𝑦 sin(𝛼𝛼𝑛𝑛𝑥𝑥)∞
𝑛𝑛=1                                                                                                                             (7) 

 
where 𝑚𝑚𝑥𝑥𝑥𝑥  and 𝑚𝑚𝑦𝑦𝑦𝑦  are Fourier series components. The amplitude of these components for the investigated 
magnetization patterns and their illustrative representation are described in Table 1 and Fig. 2, respectively. 
According to the defined Maxwell equations in PMs sub-region and the magnetization pattern components, the 
following equation can be extracted for PMs sub-regions.  
 
𝐴𝐴𝑧𝑧𝑃𝑃𝑃𝑃(𝑥𝑥, 𝑦𝑦) = ∑ (𝑎𝑎𝑛𝑛𝑃𝑃𝑃𝑃 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑃𝑃𝑃𝑃 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝜇𝜇0

𝛼𝛼𝑛𝑛
𝑚𝑚𝑥𝑥𝑥𝑥)∞

𝑛𝑛=1 cos(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑃𝑃𝑃𝑃 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) +

𝑑𝑑𝑛𝑛𝑃𝑃𝑃𝑃 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) − 𝜇𝜇0
𝛼𝛼𝑛𝑛
𝑚𝑚𝑦𝑦𝑦𝑦) sin(𝛼𝛼𝑛𝑛𝑥𝑥)                                                                                                                          (8) 

 
Applying curl on the determined magnetic vector potential in each sub-region leads to obtaining the magnetic 

flux density as follows: 
 
𝐵𝐵𝑥𝑥𝑖𝑖(𝑥𝑥, 𝑦𝑦) = ∑ 𝛼𝛼𝑛𝑛[(𝑎𝑎𝑛𝑛𝑖𝑖 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑖𝑖 sinh(𝛼𝛼𝑛𝑛𝑦𝑦))∞

𝑛𝑛=1 cos(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑖𝑖 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) +
𝑑𝑑𝑛𝑛𝑖𝑖 sinh(𝛼𝛼𝑛𝑛𝑦𝑦)) sin(𝛼𝛼𝑛𝑛𝑥𝑥)]                                                                                                                                       (9) 

𝐵𝐵𝑦𝑦𝑖𝑖 (𝑥𝑥, 𝑦𝑦) = ∑ 𝛼𝛼𝑛𝑛[(𝑎𝑎𝑛𝑛𝑖𝑖 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑖𝑖 cosh(𝛼𝛼𝑛𝑛𝑦𝑦))∞
𝑛𝑛=1 sin(𝛼𝛼𝑛𝑛𝑥𝑥) − (𝑐𝑐𝑛𝑛𝑖𝑖 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) +

𝑑𝑑𝑛𝑛𝑖𝑖 cosh(𝛼𝛼𝑛𝑛𝑦𝑦)) cos(𝛼𝛼𝑛𝑛𝑥𝑥)]                                                                                                                                    (10) 

𝐵𝐵𝑥𝑥𝑃𝑃𝑃𝑃(𝑥𝑥, 𝑦𝑦) = ∑ 𝛼𝛼𝑛𝑛[(𝑎𝑎𝑛𝑛𝑃𝑃𝑃𝑃 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑃𝑃𝑃𝑃 sinh(𝛼𝛼𝑛𝑛𝑦𝑦))∞
𝑛𝑛=1 cos(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑃𝑃𝑃𝑃 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) +

𝑑𝑑𝑛𝑛𝑃𝑃𝑃𝑃 sinh(𝛼𝛼𝑛𝑛𝑦𝑦)) sin(𝛼𝛼𝑛𝑛𝑥𝑥)]                                                                                                                                  (11) 

𝐵𝐵𝑦𝑦𝑃𝑃𝑃𝑃(𝑥𝑥, 𝑦𝑦) = ∑ 𝛼𝛼𝑛𝑛[(𝑎𝑎𝑛𝑛𝑃𝑃𝑃𝑃 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑃𝑃𝑃𝑃 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝜇𝜇0
𝛼𝛼𝑛𝑛
𝑚𝑚𝑥𝑥𝑥𝑥)∞

𝑛𝑛=1 sin(𝛼𝛼𝑛𝑛𝑥𝑥) − (𝑐𝑐𝑛𝑛𝑃𝑃𝑃𝑃 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) +

𝑑𝑑𝑛𝑛𝑃𝑃𝑃𝑃 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) − 𝜇𝜇0
𝛼𝛼𝑛𝑛
𝑚𝑚𝑦𝑦𝑦𝑦) cos(𝛼𝛼𝑛𝑛𝑥𝑥)]                                                                                                                       (12) 

For considering the rotor rotation x must be substituted by 𝑥𝑥 − 𝑑𝑑 which 𝑑𝑑 is the rotor motion and described as: 
 
𝑑𝑑 =  𝑣𝑣𝑣𝑣 + 𝑑𝑑0                                                                                                                                                      (13) 

 
where 𝑣𝑣 is converted rotor angular velocity (𝜔𝜔)  to the linear translation speed, t is time and 𝑑𝑑0 is initial rotor 

position. 
 

Table 1. The normal and tangential components of the magnetization patterns. 
Magnetization pattern 𝑚𝑚𝑥𝑥𝑥𝑥 𝑚𝑚𝑦𝑦𝑦𝑦 
Parallel 0 𝑀𝑀1𝑛𝑛 
Ideal halbach 𝑀𝑀 -𝑀𝑀 

2-Segments −
4𝑀𝑀
𝑛𝑛𝑛𝑛

 sin (𝑛𝑛𝑛𝑛
𝑘𝑘𝑥𝑥
2

) 𝑀𝑀2𝑛𝑛 

Bar magnets in shifting directions 𝑀𝑀3𝑛𝑛 𝑀𝑀4𝑛𝑛 
* 𝑀𝑀 = 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟

𝜇𝜇0
 where 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 is PM Remanence flux density, 𝑀𝑀1𝑛𝑛 = 4𝑀𝑀

𝑛𝑛𝑛𝑛
�sin �𝑛𝑛𝑛𝑛

2
� sin �𝛼𝛼𝑛𝑛𝜏𝜏𝑚𝑚

2
�� where  𝜏𝜏𝑚𝑚 is each PM width. 𝑀𝑀2𝑛𝑛 =

−2𝑀𝑀
𝑛𝑛𝑛𝑛

[cos(n𝜋𝜋(𝑘𝑘𝑥𝑥
2

+ 𝑘𝑘𝑦𝑦)- cos(n𝜋𝜋(𝑘𝑘𝑥𝑥
2

)], 𝑀𝑀3𝑛𝑛 = 4𝑛𝑛𝑛𝑛𝛼𝛼𝑝𝑝2

𝜋𝜋
sin �𝑛𝑛𝑛𝑛

2
� cos �𝑛𝑛𝑛𝑛 𝛼𝛼𝑝𝑝

2
� /(𝑛𝑛𝛼𝛼𝑝𝑝)2 − 1,  𝑀𝑀4𝑛𝑛 = −4𝑀𝑀𝛼𝛼𝑝𝑝

𝜋𝜋
sin �𝑛𝑛𝑛𝑛

2
� cos (𝑛𝑛𝑛𝑛 𝛼𝛼𝑝𝑝

2
)/

(𝑛𝑛𝛼𝛼𝑝𝑝)2 − 1, 𝛼𝛼𝑝𝑝 = 𝜏𝜏𝑚𝑚
𝜏𝜏𝑝𝑝

. 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are respectively x and y-direction magnetized PM width to the pole pitch ratio for 2-segment 

Halbach. 
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Fig. 2.   (a) Illustrative representation of each magnetization pattern; (b) tangential; and (c) normal components. 
 

2.2.2 Magnetic flux density due to only armature currents 
In this step, PMs should be inactive to estimate the effects of armature currents on the magnetic flux density 

distribution.  Two categories for the PDEs Like the previous step are formed in this step. The first group includes 
all sub-regions except for windings sub-regions where the related PDEs for this group is Laplace one that is 
described as follows: 

 
𝛻𝛻2𝑨𝑨𝒊𝒊 = 0                      i={pe, ps, pa, ppm, r, spm, sa,, ss, se}                                                                                                          (14) 
 
Solving the above equations leads to obtaining similar magnetic flux density expression to Eqs. (9)- (10). 
The second group of this step comprises the windings that the explained PDEs in this group is Poisson one as 

follows: 
 
𝛻𝛻2𝑨𝑨𝑤𝑤 = −𝜇𝜇0𝑱𝑱              w={pw, sw}                                                                                                                   (15) 
 
The Fourier series expansion of armature currents density is necessary to solve the above equation. For this aim, 

armature current density is expressed as follow: 
 
𝐽𝐽(𝑥𝑥, 𝑡𝑡) = ∑ 𝐽𝐽1𝑛𝑛 sin(𝛼𝛼𝑛𝑛𝑥𝑥)∞

𝑛𝑛=1 + 𝐽𝐽2𝑛𝑛 cos(𝛼𝛼𝑛𝑛𝑥𝑥)                                                                                                              (16) 
 
where 1nJ and 2nJ are Furrier series components of current density. These components for three phases motor 
are calculated as follow: 

 

𝐽𝐽1𝑛𝑛 = − 2𝑁𝑁𝑡𝑡𝜏𝜏𝑝𝑝
3(𝑦𝑦3−𝑦𝑦2)

cos(2𝑛𝑛𝑛𝑛3 )−cos(𝑛𝑛𝑛𝑛3 )

𝑛𝑛𝑛𝑛
× (𝑖𝑖𝑎𝑎 + 𝑖𝑖𝑏𝑏cos(2𝑛𝑛𝑛𝑛

3
) + 𝑖𝑖𝑐𝑐 cos( 2𝑛𝑛𝑛𝑛

3
))                                                                  (17) 

𝐽𝐽2𝑛𝑛 = − 2𝑁𝑁𝑡𝑡𝜏𝜏𝑝𝑝
3(𝑦𝑦3−𝑦𝑦2)

cos(2𝑛𝑛𝑛𝑛3 )−cos(𝑛𝑛𝑛𝑛3 )

𝑛𝑛𝑛𝑛
× (−𝑖𝑖𝑏𝑏 sin( 2𝑛𝑛𝑛𝑛

3
) + 𝑖𝑖𝑐𝑐 sin( 2𝑛𝑛𝑛𝑛

3
)).                                                             (18)         
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where 𝑁𝑁𝑡𝑡 is the number of turns for each coil where excited by the following currents:  
𝑖𝑖𝑎𝑎(𝑡𝑡) = 𝐼𝐼𝑚𝑚 sin(𝜔𝜔𝜔𝜔)                                                                                                                                           (19) 

𝑖𝑖𝑏𝑏(𝑡𝑡) = 𝐼𝐼𝑚𝑚 sin �𝜔𝜔𝜔𝜔 − 2𝜋𝜋
3
�                                                                                                                                   (20) 

𝑖𝑖𝑐𝑐(𝑡𝑡) = 𝐼𝐼𝑚𝑚 sin �𝜔𝜔𝜔𝜔 + 2𝜋𝜋
3
�                                                                                                                                  (21) 

 
where 𝐼𝐼𝑚𝑚 is the maximum phase current. Therefore, the related solution of the magnetic vector potential in the 
windings sub-regions is determined as follows: 

 
𝐴𝐴𝑧𝑧𝑤𝑤(𝑥𝑥, 𝑦𝑦) = ∑ (𝑎𝑎𝑛𝑛𝑤𝑤 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝑏𝑏𝑛𝑛𝑤𝑤 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝜇𝜇0

𝛼𝛼𝑛𝑛2
𝐽𝐽2𝑛𝑛)∞

𝑛𝑛=1 cos(𝛼𝛼𝑛𝑛𝑥𝑥) + (𝑐𝑐𝑛𝑛𝑤𝑤 sinh(𝛼𝛼𝑛𝑛𝑦𝑦) +

𝑑𝑑𝑛𝑛𝑤𝑤 cosh(𝛼𝛼𝑛𝑛𝑦𝑦) + 𝜇𝜇0
𝛼𝛼𝑛𝑛2
𝐽𝐽1𝑛𝑛) sin(𝛼𝛼𝑛𝑛𝑥𝑥)                                                                                                                           (22) 

 
 Similar to the previous section, applying curl on the obtained magnetic vector potential leads to calculating the 

magnetic flux density components. 
 
2.3 The boundary conditions 

The calculated magnetic vector potential extracted from Maxwell equations in each sub-region includes 4 
variables. Therefore, 44 variables are available and it is necessary to form 44 equation to predict the magnetic 
vector potential in the slotless AFPMBM under the study. Noted that, according to the geometry structure and 
applied coordinate system, some coefficients (i.e. 𝑎𝑎𝑛𝑛

𝑝𝑝𝑝𝑝 , 𝑐𝑐𝑛𝑛
𝑝𝑝𝑝𝑝 , 𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠 ,𝑑𝑑𝑛𝑛𝑠𝑠𝑠𝑠) must be zero and 40 variables are extracted 

based on the defined PDEs in each sub-region. These 40 variables are: 
 
  𝑏𝑏𝑛𝑛

𝑝𝑝𝑝𝑝,𝑑𝑑𝑛𝑛
𝑝𝑝𝑝𝑝 , 𝑎𝑎𝑛𝑛

𝑝𝑝𝑝𝑝, 𝑏𝑏𝑛𝑛
𝑝𝑝𝑝𝑝, 𝑐𝑐𝑛𝑛

𝑝𝑝𝑝𝑝,𝑑𝑑𝑛𝑛
𝑝𝑝𝑝𝑝, 𝑎𝑎𝑛𝑛

𝑝𝑝𝑝𝑝, 𝑏𝑏𝑛𝑛
𝑝𝑝𝑝𝑝, 𝑐𝑐𝑛𝑛

𝑝𝑝𝑝𝑝 ,𝑑𝑑𝑛𝑛
𝑝𝑝𝑝𝑝, 𝑎𝑎𝑛𝑛

𝑝𝑝𝑝𝑝 , 𝑏𝑏𝑛𝑛
𝑝𝑝𝑝𝑝, 𝑐𝑐𝑛𝑛

𝑝𝑝𝑝𝑝 ,𝑑𝑑𝑛𝑛
𝑝𝑝𝑝𝑝, 𝑎𝑎𝑛𝑛

𝑝𝑝𝑝𝑝𝑝𝑝, 𝑏𝑏𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝, 𝑐𝑐𝑛𝑛

𝑝𝑝𝑝𝑝𝑝𝑝,𝑑𝑑𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝, 𝑎𝑎𝑛𝑛𝑟𝑟 , 𝑏𝑏𝑛𝑛𝑟𝑟 , 𝑐𝑐𝑛𝑛𝑟𝑟 ,𝑑𝑑𝑛𝑛𝑟𝑟 ,  

 𝑎𝑎𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠, 𝑐𝑐𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠, 𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠, 𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠,𝑑𝑑𝑛𝑛𝑠𝑠𝑠𝑠 , 𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠 , 𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠, 𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠 , 𝑑𝑑𝑛𝑛𝑠𝑠𝑠𝑠 , 𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠, 𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠, 𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠,𝑑𝑑𝑛𝑛𝑠𝑠𝑠𝑠, 𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠 , 𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠 .  
 
For calculating these variables the magnetic boundary conditions are employed. These boundary conditions are 

extracted based on the following equations for the motor under the study: 
 

( , ) ( , )i i
x xH x y H x yy Y y Y

+== =  
4 3 2 1 0

0 1 2 3 4

( , , ),( , , ),( , , ),( , , ),( ),
( ),( , , ),( , , ),( , , ),( , , )

( , , )
pe ps y ps pw y pw pa y pa ppm y ppm,r, y
spm,r, y spm sa y sa sw y sw ss y ss se y

i i Y
  
 

− − − − −  

+ =  
(23) 

( , ) ( , )i i
y yB x y B x yy Y y Y

+== =
 (24) 

 
where H is magnetic field intensity vector. All these extracted 40 boundary conditions are described in Appendix. 
 
3. Results and discussion 

 
To validate the derived analytical expressions, the magnetic field distributions in each sub-region of the 

presented AFPMBM are compared with those of FEM to describe the accuracy of the proposed analytical model. 
For this aim, the motor including the specifications in Table 2 is employed and the extracted results are developed 
for both analytical and numerical models. The analytical and numerical results of magnetic flux density distribution 
due to armature currents and PMs in the motor under the study are respectively represented in Figs 3 and 4 where 
acceptable accuracy between both analytical and numerical models can be observed.  

Noted that the facing PMs on both sides of the presented motor with parallel magnetization patterns play an 
important role in magnetic flux in the rotor.  In this study, facing PMs on both sides are magnetized in a different 
direction which leads to reducing the tangential components of magnetic flux in the rotor. Also, the extracted 
results reveal that the magnetic flux passes through the PMs in the Halbach magnetization pattern. Therefore, in 
the investigated magnetization patterns it is possible to eliminate the rotor and replacing it by the material which 
is lighter or cheaper. 

The slotless stator structure of the studied motor results in increasing the magnetic air-gap and the magnetic 
flux density in originated due to PMs and armature currents have no significant effects on magnetic flux density 
distribution. Also, the distributed magnetic flux due to ideal Halbach magnetization patterns includes the minimum 
total harmonic distortion compared with those of other magnetization patterns. 

The simulation time has been mentioned as the main benefit of the proposed analytical model. In this study, a 
computer with 32-GB RAM and TM i7-7700 Processor was employed and the maximum length of 4 mm in each 
mesh was considered for the FEM model. In this condition, the analytical model simulation time was 11 times less 
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than the numerical model for the studied motor. It means that applying the analytical model in the design stage of 
the presented slotless AFPMBM results in saving a considerable amount of time. 

 
Table 2. Main design parameters of the proposed axial flux motor under the study 

Values Symbols Parameters 
12 mm 2𝑦𝑦0 Rotor back iron height 
6 mm 𝑦𝑦1 − 𝑦𝑦0 PM height 
2 mm 𝑦𝑦2 − 𝑦𝑦1 Air-gap height 
10 mm 𝑦𝑦3 − 𝑦𝑦2 Winding height 
10 mm 𝑦𝑦4 − 𝑦𝑦3 Stator back iron height 
1000 𝜇𝜇𝑟𝑟𝑠𝑠 Stator relative permeability 
1500 𝜇𝜇𝑟𝑟𝑟𝑟 Mover relative permeability 
1.05 𝜇𝜇𝑟𝑟𝑃𝑃𝑃𝑃 PM relative permeability 
40 mm 𝜏𝜏𝑚𝑚 PM width for the parallel pattern 
50 mm 𝜏𝜏𝑝𝑝 Pole pitch 
8 𝑝𝑝 Number of poles 
0.4 𝑘𝑘𝑥𝑥 x-direction magnetized PM width to the pole pitch ratio for 2-segment Halbach 
0.6 𝑘𝑘𝑦𝑦 y-direction magnetized PM width to the pole pitch ratio for 2-segment Halbach 
1.13 T 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 PM Remanence flux density 
5A 𝐼𝐼𝑚𝑚 Peak armature current 
76 𝑁𝑁𝑡𝑡 Number of turns per coil 
4 𝑁𝑁𝑐𝑐 Number of coils per phase 
0.6 𝐾𝐾𝑓𝑓 Filling factor 
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Fig. 3. Flux density component in the presented motor due to only armature current 
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Fig. 4. Analytical and numerical open circuit results of magnetic flux density distribution in motor under the study 
 
4. Conclusions 

 
An exact 2-D analytical sub-domain model for calculating the magnetic fields of a slotless AFPMBM is 

proposed in this paper based on the sub-domain method. The analytical procedure has been done in two separate 
steps including the effects of PMs and armature currents, respectively. Various magnetization patterns such as 
parallel, ideal Halbach, 2-segment Halbach and bar magnet in shifting direction have been considered to investigate 
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the effects of PMs on the magnetic flux density distribution in each sub-region. The FEM is utilized to confirm 
the accuracy of the proposed analytical model and the extracted results reveal a suitable agreement between both 
analytical and numerical models. The benefits of the analytical models are described where less computational 
time of the analytical models was determined by employing a straightforward comparison of analytical and 
numerical simulation time and the analytical model was 11 times faster than the FEM. 
 
5. Appendix 

 
Imposing the boundary conditions between two adjacent sub-regions based on continuity of the tangential 

components of the magnetic field intensity and normal components of magnetic flux density are formed as follows:  
 
a: Interface between primary exterior and primary stator at 𝑦𝑦 = 𝑦𝑦4 

4 4 4sin cosh( ) h( ) sinh( ) 0s pe ps ps
n n n n n nr b y a y b yµ α α α− − =  (25) 

4 4 4sin cosh( ) h( ) sinh( ) 0s pe ps ps
n n n n n nr d y c y d yµ α α α− − =  (26) 

4 4 4cos sinh( ) h( ) cosh( ) 0pe ps ps
n n n n n nb y a y b yα α α− − =  (27) 

4 4 4cos sinh( ) h( ) cosh( ) 0pe ps ps
n n n n n nd y c y d yα α α− − =  

 
(28) 

b: Interface between primary stator and primary winding at 𝑦𝑦 = 𝑦𝑦3 

3 3 3 3cosh( ) sinh( ) cosh( ) sinh( ) 0s pw s pw ps ps
n n n n n n n nr ra y b y a y b yµ α µ α α α+ − − =  (29) 

3 3 3 3cosh( ) sinh( ) cosh( ) sinh( ) 0s pw s pw ps ps
n n n n n n n nr rc y d y c y d yµ α µ α α α+ − − =  (30) 

0
2 23 3 3 3sinh( ) cosh( ) sinh( ) cosh( ) 0
n

pw pw ps ps
n n n n n n n nna y b y a y b yJµα α α α

α
+ + − − =  (31) 

0
2 13 3 3 3sinh( ) cosh( ) sinh( ) cosh( ) 0
n

pw pw ps ps
n n n n n n n nnc y d y c y d yJµα α α α

α
+ + − − =  (32) 

 
c: Interface between primary winding and primary air-gap at 𝑦𝑦 = 𝑦𝑦2 

2 2 2 2cosh( ) sinh( ) cosh( ) sinh( ) 0pw pw pa pa
n n n n n n n na y b y a y b yα α α α+ − − =  (33) 

2 2 2 2cosh( ) sinh( ) cosh( ) sinh( ) 0pw pw pa pa
n n n n n n n nc y d y c y d yα α α α+ − − =  (34) 

0
2 22 2 2 2sinh( ) cosh( ) sinh( ) cosh( ) 0
n

pw pw pa pa
n n n n n n n nna y b y a y b yJµα α α α

α
+ + − − =  (35) 

0
2 12 2 2 2sinh( ) cosh( ) sinh( ) cosh( ) 0
n

pw pw pa pa
n n n n n n n nnc y d y c y d yJµα α α α

α
+ + − − =  (36) 

 
d: Interface between primary air-gap and primary PMs at 𝑦𝑦 = 𝑦𝑦1 

1 1 1 1cosh( ) sinh( ) cosh( ) sinh( ) 0PM pa PM pa ppm ppm
n n n n n n n nr ra y b y a y b yµ α µ α α α+ − − =  (37) 

1 1 1 1cosh( ) sinh( ) cosh( ) sinh( ) 0PM pa PM pa ppm ppm
n n n n n n n nr rc y d y c y d yµ α µ α α α+ − − =  (38) 

1 1 1 1
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

pa pa ppm ppm
n n n n n n n n xna y b y a y b y m

µ
α α α α

α
+ − − − =  (39) 

1 1 1 1
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

pa pa ppm ppm
n n n n n n n n ync y d y c y d y m

µ
α α α α

α
+ − − + =  (40) 

 
e: Interface between primary PMs and rotor at 𝑦𝑦 = 𝑦𝑦0 

0 0 0 0cosh( ) sinh( ) cosh( ) sinh( ) 0PM r PM r r ppm r ppm
n n n n n n n nr r r ra y b y a y b yµ α µ α µ α µ α+ − − =  (41) 

0 0 0 0cosh( ) sinh( ) cosh( ) sinh( ) 0PM r PM r r ppm r ppm
n n n n n n n nr r r rc y d y c y d yµ α µ α µ α µ α+ − − =  (42) 
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0 0 0 1
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

r r ppm ppm
n n n n n n n n xna y b y a y b y m

µ
α α α α

α
+ − − − =  (43) 

0 0 0 0
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

r r ppm ppm
n n n n n n n n ync y d y c y d y m

µ
α α α α

α
+ − − + =  (44) 

f: Interface between rotor and secondary PMs at 𝑦𝑦 = −𝑦𝑦0 

0 0 0 0cosh( ) sinh( ) cosh( ) sinh( ) 0PM r PM r r spm r spm
n n n n n n n nr r r ra y b y a y b yµ α µ α µ α µ α− + − − − − − =  (45) 

0 0 0 0cosh( ) sinh( ) cosh( ) sinh( ) 0PM r PM r r spm r spm
n n n n n n n nr r r rc y d y c y d yµ α µ α µ α µ α− + − − − − − =  (46) 

0 0 0 1
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

r r spm spm
n n n n n n n n xna y b y a y b y m

µ
α α α α

α
− + − − − − − − =  (47) 

0 0 0 0
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

r r spm spm
n n n n n n n n ync y d y c y d y m

µ
α α α α

α
− + − − − − − + =  (48) 

g: Interface between secondary PMs and secondary air-gap at 𝑦𝑦 = −𝑦𝑦1 

1 1 1 1cosh( ) sinh( ) cosh( ) sinh( ) 0PM sa PM sa spm spm
n n n n n n n nr ra y b y a y b yµ α µ α α α− + − − − − − =  (49) 

1 1 1 1cosh( ) sinh( ) cosh( ) sinh( ) 0PM sa PM sa spm spm
n n n n n n n nr rc y d y c y d yµ α µ α α α− + − − − − − =  (50) 

1 1 1 1
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

sa sa spm spm
n n n n n n n n xna y b y a y b y m

µ
α α α α

α
− + − − − − − − =  (51) 

1 1 1 1
0sinh( ) cosh( ) sinh( ) cosh( ) 0
n

sa sa spm spm
n n n n n n n n ync y d y c y d y m

µ
α α α α

α
− + − − − − − + =  (52) 

 
h: Interface between secondary air-gap and secondary winding at 𝑦𝑦 = −𝑦𝑦2 

2 2 2 2cosh( ) sinh( ) cosh( ) sinh( ) 0sw sw sa sa
n n n n n n n na y b y a y b yα α α α− + − − − − − =  (53) 

2 2 2 2cosh( ) sinh( ) cosh( ) sinh( ) 0sw sw sa sa
n n n n n n n nc y d y c y d yα α α α− + − − − − − =  (54) 

0
2 22 2 2 2sinh( ) cosh( ) sinh( ) cosh( ) 0
n

sw sw sa sa
n n n n n n n nna y b y a y b yJµα α α α

α
− + − + − − − − =  (55) 

0
2 12 2 2 2sinh( ) cosh( ) sinh( ) cosh( ) 0
n

sw sw sa sa
n n n n n n n nnc y d y c y d yJµα α α α

α
− + − + − − − − =  (56) 

 
i: Interface between secondary winding and secondary stator at 𝑦𝑦 = −𝑦𝑦3 

3 3 3 3cosh( ) sinh( ) cosh( ) sinh( ) 0s sw s sw ss ss
n n n n n n n nr ra y b y a y b yµ α µ α α α− + − − − − − =  (57) 

3 3 3 3cosh( ) sinh( ) cosh( ) sinh( ) 0s sw s sw ss ss
n n n n n n n nr rc y d y c y d yµ α µ α α α− + − − − − − =  (58) 

0
2 23 3 3 3sinh( ) cosh( ) sinh( ) cosh( ) 0
n

sw sw ss ss
n n n n n n n nna y b y a y b yJµα α α α

α
− + − + − − − − =  (59) 

0
2 13 3 3 3sinh( ) cosh( ) sinh( ) cosh( ) 0
n

sw sw ss ss
n n n n n n n nnc y d y c y d yJµα α α α

α
− + − + − − − − =  (60) 

 
j: Interface between secondary stator and secondary exterior at 𝑦𝑦 = −𝑦𝑦4 

4 4 4coscosh( ) h( ) sinh( ) 0s se ss ss
n n n n n nr a y a y b yµ α α α− − − − − =  (61) 

4 4 4cos cosh( ) h( ) sinh( ) 0s se ss ss
n n n n n nr c y c y d yµ α α α− − − − − =  (62) 

4 4 4sinsinh( ) h( ) cosh( ) 0se ss ss
n n n n n na y a y b yα α α− − − − − =  (63) 

4 4 4sinsinh( ) h( ) cosh( ) 0se ss ss
n n n n n nc y c y d yα α α− − − − − =  (64) 
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