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Abstract: The South West Monsoon rainfall data of the meteorological subdivision number 6 of India enclosing 
Gangetic West Bengal is shown to be decomposable into eight empirical time series, namely Intrinsic Mode 
Functions. This leads one to identify the first empirical mode as a nonlinear part and the remaining modes as the 
linear part of the data. The nonlinear part is modeled with the technique Neural Network based Generalized 
Regression Neural Network model technique whereas the linear part is sensibly modeled through simple regression 
method. The different Intrinsic modes as verified are well connected with relevant atmospheric features, namely, 
El Nino, Quasi-biennial Oscillation, Sunspot cycle and others. It is observed that the proposed model explains 
around 75% of inter annual variability (IAV) of the rainfall series of Gangetic West Bengal. The model is efficient 
in statistical forecasting of South West Monsoon rainfall in the region as verified from independent part of the real 
data. The statistical forecasts of SWM rainfall for GWB for the years 2012 and 2013 are108.71 cm and 126.21 cm 
respectively, where as corresponding to the actual rainfall of 93.19 cm 115.20 cm respectively which are within 
one standard deviation of mean rainfall. 
Keywords: South West Monsoon (SWM) rainfall; Intrinsic Mode Function (IMF); Generalized Regression Neural 
Network (GRNN); Quasi-biennial Oscillation (QBO); Inter annual variability (IAV). 

 
 
1. Introduction 

 
The summer monsoon or so called the South West Monsoon (SWM) rainfall comprising of the rainfalls of the 

months of June, July, August and September, is the substantial component of annual rainfall in India as well as the 
meteorological sub division number 6 covering the region of Gangetic West Bengal (GWB). The economy and 
agriculture are vastly dependent on the characteristics of SWM rainfall. The time series for different spatial and 
time scales are the primary concern of scientists [1], [2], [3]. Figure 1 shows the meteorological sub divisions of 
India including GWB. 

In fact, efforts are made from earlier times to understand the connections between SWM rainfall and other 
global and atmospheric phenomenon. As an example, [4] links between the Indian monsoonal rainfall data and the 
global Sea Surface Temperature (SST) data. The other approach leads to, simply modeling the past data a year 
ahead with an insignificant error band to achieve forecast without linking with the phenomenon. 

There are some studies that elaborate the periods latent in the data with the help of Fourier decomposition, 
namely, Quasi-biennial Oscillation (QBO) [5], tidal forcing [6], El-Nino Southern Oscillation (ENSO) [7], [8], 
Sunspot Cycle [9] and intra-seasonal periodicities [10], [7]. 

The conventional method of analysis of rainfall data counts on stationary random process with Gaussian 
property [11], [3]. For SWM rainfall series of GWB, the investigations on auto-correlation and power-spectral 
density indicates that those are too weak for modeling as linear time series [12]. However, the particular form of 
the nonlinear model to be used is, perhaps, not known. 

On the other hand, the decomposition of SWM rainfall upon application of principal components and 
understanding the nature of the components are very useful study for identifying coherent zones and nature of the 
components [11], [12], [13]. 

The rainfall time series is supposed to carry the causes in itself. With this connection the works of [14], [15] 
may be referred where though causes are not known, with sufficient data series rainfall is suitably empirically 
modeled. 

In the last decade, it has been pointed out that nonlinear model with variable frequency harmonic terms can be 
effectively used to explain majority of the inter annual variation (IAV) and indicated that the rainfall data can be 
decomposed into hierarchical Integral Mode Functions (IMFs) as signals if the basic data is not a white noise [16]. 
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The approach has been examined at all India level by Iyenger and Raghukant [15]. Recently, a few literatures are 
available of this approach in other countries like Australia and Caspian catchment area [19], [20] respectively. 

However, the variability study and forecasting exercise has received little attention in the region of GWB 
(meteorological subdivision No. 6) in the southern plain of the state West Bengal, India. The importance of the 
region is very much known for its primary role in industry, agriculture and civilization. In the present paper, a new 
representation of the SWM rainfall of GWB in terms of narrow band IMF series is studied. These time series are 
simpler than the original data for modeling and forecasting. 

 The structure of the paper is as follows. Firstly, the Empirical Modes called IMFs of GWB would be discussed. 
Thereafter, forecasting strategy would be presented. A combination of Multiple Linear Regression analysis and 
Generalized Regression Neural Network (GRNN) architecture would be discussed.  Lastly, an analysis on the 
performance of model would be provided. 

 

 
Figure 1. Meteorological Subdivisions including Gangetic West Bengal (GWB) 

 
2.  Rainfall data 
 

The rainfall data of GWB are collected from the website www.tropmet.res.in of Indian Institute of Tropical 
Meteorology (IITM), Pune. The SWM rainfall data for the period 1871-2013 which is the sum of the monthly 
rainfall values of June, July, August and September are selected for detailed study. The SWM data of GWB are 
presented in Figure 2 for preliminary idea. Some basic statistics of the data such as the Climatic Normal (mR) and 
Climatic Deviation about the Normal (ϭR) are presented in Table 1.  

 
Table 1. SWM rainfall data (1871-2001) 

Region Area (Sq. Km.) Mean (cm)(mR) Std. dev. (ϭR) Skewness  Kurtosis 
GWB 44300 106.93 10.2734 -0.4425 2.9845 

* GWB: Gangetic West Bengal 

 
Figure 2. SWM rainfall of GWB for modeling period (1871-2000) 
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3. Intrinsic Mode Functions (IMFs) 
 

The time series of the SWM rainfall is decomposed into number of empirical modes, in other words, Intrinsic 
Mode Functions (IMFs) series. These IMF series identify dominant period and amplitudes as indicated by Huang 
et al. [17]. As mentioned in their work, these series are uncorrelated with each other at zero lag but correlated with 
SWM data in decreasing order of importance. 

A total of eight IMF series, namely, IMF1, IMF2,…, IMF8 are hierarchically extracted till the sieved data indicates 
no sign of oscillations. Each IMF is a narrow band process and possesses identifiable central periods. Long-term 
climate trends along with centre-line drifts, specific frequency or period and long period non-stationary features 
emerges as the eight IMFs. For the time series of Figures 3-10, eight IMFs of SWM rainfall are presented. It is 
observed that the last two IMFs i.e. IMF7 and IMF8 are invariably positive and is a slowly varying mode around 
the long-term average [17]. The process may be thought of as the normal or climatic component about the IAV of 
the appearing monsoon rainfall occurs. The sum of all the IMF series at a particular time is equal to the original 
SWM data series to the higher level of accuracy. 
 

 
Figure 3. First Intrinsic Mode Function (IMF1) of SWM rainfall of GWB 

 

 
Figure 4. Second Intrinsic Mode Function (IMF2) of SWM rainfall of GWB 

 

 
Figure 5. Third Intrinsic Mode Function (IMF3) of SWM rainfall of GWB 

0 20 40 60 80 100 120 140
-3

-2

-1

0

1

2

3

4

Year (1871-2000)

IM
F1

GANGETIC WEST BENGAL

Variance =1.9431

0 20 40 60 80 100 120 140
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Year (1871-2000)

IM
F2

GANGETIC WEST BENGAL

Variance = 0.8618

0 20 40 60 80 100 120 140
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Year (1871-2000)

IM
F3

GANGETIC WEST BENGAL

Variance = 0.5470

62

P. Basak Journal of Modeling and Optimization 2020;12(1):60-69



 
 

 
Figure 6. Fourth Intrinsic Mode Function (IMF4) of SWM rainfall of GWB 

 

 
Figure 7. Fifth Intrinsic Mode Function (IMF5) of SWM rainfall of GWB 

 

 
Figure 8. Sixth Intrinsic Mode Function (IMF6) of SWM rainfall of GWB 

 

 
Figure 9. Seventh Intrinsic Mode Function (IMF7) of SWM rainfall of GWB 
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Figure10. Eighth Intrinsic Mode Function (IMF8) of SWM rainfall of GWB 

 
Table 2. Central period (T) of the IMF’s in years and % variance contributed to IAV 

Region IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 
 T IAV% T IAV% T IAV% T IAV% T IAV% T IAV% T IAV% T IAV% 
GWB 2.71 62.82 5.91 28.07 13.00 17.69 21.66 4.17 43.33 14.59 65 4.94 >100 16.94| Not 

detectable 
6.20 

*GWB: Gangetic West Bengal 
 

The contribution of the IMF series are computed found on the basis of time averaging and project the relative 
contribution of an IMF to the total variability of the rainfall. It is observed that all IMFs exhibit slowly varying 
amplitudes and frequencies (Figures 3-10) indicating a narrow band process. The dominant period of oscillation 
can be found by counting the zeros and the extrema in an IMF series. In Table 2, the central period and the 
contribution of each IMF to IAV percentage is listed. It is observed that IMF1 is a predominant mode with an 
average period of 2.71 years contributing to 62.82% of IAV. IMF2 is the second most important mode with a 
dominant period of 5.91years contributing to 28.07% of IAV. These two modes are closely connected with the 
Quasi-biennial Oscillation (QBO) and El Niño–Southern Oscillation (ENSO) phenomenon respectively as 
evidenced in case of All India level [16]. In the same way, IMF3 with time period of about 13 years contributing 
to 17.69% of IAV can be associated with the sunspot cycle of about 11 years period which is in agreement with 
the works of Bhalme and Jadav [9]. 

The central period of IMF4 is about 21 years which is closely connected to tidal forcing of about 19 years of 
quasi-cycle of Indian monsoon in agreement with the works of Campbell et al. [6]. The IMF5 shows an elongated 
period of 43 years may follow [17]. 

This way, IMF6 is here identified as frequently connected to the elongated mode of 65 years contributing about 
5% of IAV represents the presence of six quasi–cycle modes as indicated by Narashima and Kailash [7] using 
wavelet analysis of Indian monsoon rainfall. The IMF7 and IMF8 contributing about period of 100 years and above 
are the presence of fragmented slowly varying long-term deterministic shift of monsoon in the GWB about which 
SWM rainfall is changing. This part is undetected in Indian monsoon rainfall of India [15] 
 
4. IMF statistics 
 

For understanding the statistical relation between the IMFs and the data, one has to construct the correlation 
matrix of the time series. In Table 3, the correlation matrix (7x7) of the SWM GWB data and the seven variable 
IMFs are shown. It is understood that the correlation values between the data and few IMFs, namely IMF1, IMF2 
and IMF3 are statistically significant and are phenomenally meaningful. Also, the IMFs are themselves 
uncorrelated, expecting sum of the variances of the IMFs to be closely equal to total variance of the data; small 
effect of sample size being neglected. This enables us to identify inherent Intrinsic Modes that constitute the overall 
behavior of the data. 
 
5. Forecasting strategy 
 

Forecasting may be understood as extending the data series stepwise for the future years.  In this context, 
Modeling is a equation that closely matches the data with a minimum error. For simple functions with an analytic 
form, the exercise can be easily carried out by Talyor’s series expansion; as the rainfall data is highly erratic, no 
simple linear function can be fitted to the data series. The decomposition of data into IMF series seems to be an 
alternative approach for forecasting monsoonal rainfall of a region using the decomposed IMF series, which is 
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certainly simpler than the original data.  
SWM rainfall, as a random variable is Gaussian except a few stations [3], [12], [16], so far data studied here. 

The possibility of forecasting of SWM rainfall incorporating IAV is now switched over to the eight hierarchical 
IMFs. The first IMF carries the higher frequency end of the information and is expected to be higher and more 
random than the others. A new feature of bi-modality emerges for the first IMF and is easily understood from the 
histogram (Figure 11) that negates the possibility of Gaussianness. The exhibited behavior of bi-modality indicates 
strong non-linearity in the dynamics of the process and rules out existence of linear auto-regressive representation. 
It is supported by the Chi-square test with constructed 14 intervals. The test reveals that IMF1 is non-Gaussian at 
5% level with observed values of Chi-square as 25.67 at 13 degrees of freedom. 
 

Table 3. Correlation matrix of IMFs of GWB 
 Data IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 
Data 1.0000 0.6728* 0.4665* 0.3578* 0.1159 -0.0411 0.0465 0.0426 
IMF1  1.0000 -0.1059 -0.1243 -0.0125 -0.0284 -0.0445 -0.0035 
IMF2   1.0000 0.1337 0.0271 0.0057 0.0143 +0.0134 
IMF3    1.0000 -0.0297 0.0080 0.0081 -0.0286 
IMF4     1.0000 -0.0032 -0.2570 -0.0031 
IMF5      1.0000 -0.4380* -0.1249 
IMF6       1.0000 -0.4817 
IMF7        1.0000 

*Significant at 5% level. 
 

 
Figure 11. Histogram of IMF1 showing bi-modality. 

 
However, IMF1 is stationary as examined by the standard run test of decadal variance about the median (which 

counts to 7 and within the range 4-11 with 13 decades at 5% level). This part of IMF1 is considered as non-linear 
part. Excluding the first IMF, the remaining part (Rj – IMF1) of the series is tested for Gaussianness and stationarity 
as detailed. The Gaussianness has been revealed by Chi-square test and the stationarity of this part been verified 
by the standard run test on decadal variance.  

The remaining other part (Rj – IMF1) is now considered as linear part and can be modeled through multiple 
linear regressions from own past values. The representation for the linear part yn is chosen as 

 
yn+1  = C1Rn + C2yn-1 + C3yn-2 + C4yn-3 + C5yn-4 + C6                                                    (1) 
 
It is found that the equation (1) provides an excellent fit for the linear part with the data base.  

 
Table 4. Regression coefficients of Equation (1) 

Region C1 C2 C3 C4 C5 C6 Ϭy(e) Correlation Coefficient (CC) 
GWB 0.1196 1.5425 -1.6454 1.1161 0.4727 3.9072 0.5394 0.9144 
* GWB: Gangetic West Bengal 
 

The regression coefficients are found from the data series of 1871–2000, leaving first 4 years as regression 
equation contains upto yj-4 terms by least square method and the resulting standard deviation of the error Ϭy(e) and 
correlation coefficient (CC) between actual data and the model fitted are presented in Table 4. The correlation is 
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highly significant endorsing the appropriateness of identifying yj as the linear part of SWM rainfall of GWB. 
 
6. Generalized Regression Networks architecture connected to non linear IMF1 

 
The first IMF that accounts for most of IAV of monsoon rainfall is non-Gaussian and non-linear process. In the 

case unstructured complex problem, the Generalized Regression Neural Network (GRNN) an improved version 
of Neural Network class of technology based on non-parametric regression, suggested by Specht [18] is applied.  

 
6.1. Architecture of GRNN 

A GRNN model contains two hidden layers, pattern neurons and summation neurons. The calculations 
performed in each pattern neuron of GRNN are exp (-Dj

2/2ϭ2), Dj being the distance between training sample and 
ϭ being smoothness parameter, the normal distribution is considered at each training sample. The signals of the 
pattern neuron, going into the Denominator neuron are weighted with corresponding values of the training samples 
Yj. The weights on the signals going into the Numerator are one. Each sample from the training data influences 
every point that is being predicted by GRNN. 

The author [18] showed that GRNN works for modeling and extending regression, prediction, classification 
and function approximation. The idea is that every training sample will represent mean to a radial basis neuron. 
After several trials with number of previous values of IMF1, a GRNN with hidden layer is utilized as shown in 
Figure 12. 

 

 
 
  Figure 12. General Regression Neural Network with Radial Basis Functions 
 
6.2. Results of IMF1 with GRNN 

The computation has been done using MATLAB toolbox on GRNN algorithms, with 1871-2000 as the training 
period. With the help of antecedent IMF1 values, the GRNN model is capable of predicting IMF1 for the year (n 
+1). In Table 5, the standard deviation Ϭy(e) of the errors is constructed on the training period data is shown along 
with the correlation coefficient (CC) between the actual IMF1  and the GRNN results. It is observed that GRNN is 
quite versatile in capturing the latent nonlinear structure evidenced by the high correlation (0.8062) between the 
actual and simulated IMF1 values. An advantage of this approach is that the error in the model can also be 
characterized statistically. 
 

Table 5. Statistics of GRNN model for IMF: training period (1871–2000) 
Region Ϭy(e) Correlation Coefficient (CC) 
GWB 2.2125 0.806153 
* GWB: Gangetic West Bengal 
 
7. Forecasting 
 

The successful modeling of IMF1j and yj can be extended by one year, to make a forecast of the next year rainfall 
value. Firstly, for yn+1 and then for IMF1,n+1is computed from the models mentioned above. The sum of the two 
values produces a forecast for Rn+1. Here, the performance of the forecast strategy is investigated by considering 
for the period 2001–2013, that was deliberately left out of the modeling exercise. The quality of modeling Rj in 
the training period (1875–2000) and the efficiency of one-step-ahead forecasting in the testing period (2001–2013) 
are presented in Table 6. 
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Table 6. Performance of the modeling and forecasting strategy 
Region Modeling period (1871–2000) Forecasting period (2001–2013) 
 Ϭm(e) CCm PPm Ϭf(e) CCf PPf 
GWB 2.06158 0.7060 0.7321 2.3562      0.8919 0.7499 
* GWB: Gangetic West Bengal 
 

 
Figure 13. The actual SWM rainfall and Predicted SWM rainfall of GWB for the testing period (2001-2013) 
. 

The sample forecast is an expected value and may be slightly deviate from the actual observation. In Table 7, 
detailed numerical results on the independent forecasts are presented. Fig. 13 elaborates the actual rainfall data 
and predicted rainfall data for testing period (2001-2013). 

It is evidenced that the present strategy for forecasting SWM rainfall one year ahead, works well within certain 
limits. It may be noted that the sample forecast is an expected value and hence may not precisely match with the 
actual observation.  

 
Table 7. Independent test forecasting (Gangetic West Bengal) 

Year Actual(x10)cm Forecast(x10)cm) 
2001 10.9499 10.5282 
2002 13.8459 11.1995 
2003 11.2329 14.3479 
2004 11.4639 12.0564 
2005 10.3210 12.7563 
2006 13.8490 15.5299 
2007 16.9519 16.9519 
2008 11.5039 10.1950 
2009  9.6949  9.8957 
2010 7.8919  6.6618 
2011 13.7800  15.6741 
2012  9.3190  10.8719 
2013 11.5200 13.5200 

    
8. Performance of the model 
 

The performance of the model proposed are worked out with three statistical parameters are chosen. The first 
two are the Root Mean Square Error (RMSE) and the correlation coefficient (CCm) between the given data and the 
simulated values out of the model. A statistic called Performance Parameter [4], namely, PPm = 1 – (ϭm

2)/ (ϭd
2), 

where ϭm
2 is the mean square error and ϭd

2 is the actual data variance, has also been extracted. In a perfect model, 
ϭm

2 will be zero and both CCm and PPm would tend towards unity. Table 6 indicates that the efficiency of the 
present model is good for testing period and correlation coefficient between forecasted and actual data is 0.89, 
which is sufficiently high. In verifying  the ability of the model for the forecasting, period 2001–2013, the model 
parameters are kept constant all through the thirteen years there by relaxing the constrains for forecasting exercise, 
the model parameter have to be updated, every year before forecast. It is observed that even under the less than 
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ideal condition, the forecasts produced by the model are good enough. For a sample size of N = 13 (2001 - 2013), 
the correlation coefficient (CCf) in the test period has to be at least 0.6 to be taken as significant. It is found from 
Table 6 that CCf is well above 0.6. 
 
9. Discussion  
 

IAV of monsoon rainfall of GWB has been investigated in this paper with a valuable perspective and points out 
some interesting feature. It is identified that the seasonal SWM rainfall time series of GWB can be decomposed 
into eight statistically almost uncorrelated modes; the summation of which gives back the original data. The 
seventh and eighth modes are identified easily associated with the climatic variation persistent over the total data 
base. The remaining six empirical modes (IMFs) are narrow band random processes, with well defined central 
periods, connected to specified well defined meteorological phenomenon. The first IMF which accounts for the 
highest variability is strongly non–Gaussian and can be successfully predicted using GRNN techniques. The 
remaining part of the rainfall after removing the first IMF is agreeable for a linear multiple regressive 
representation. With two decided separate representations; a methodology has been developed to forecast rainfall. 
However, the analysis does not account for other variability, namely, intra annual, inter seasonal or intra seasonal 
variability persistent in the monsoon rainfall. The forecast of SWM rainfall for GWB for the year 2012 and 2013 
are108.71 cm and 126.21 cm respectively corresponding to the actual SWM rainfall of 93.19 cm 115.20cm, which 
are within one standard deviation of mean rainfall.  Among the first six IMFs, it has been identified that first three 
IMFs contributed nearly 90% of the variability. It may be interpreted that if those are simultaneously negative, the 
chances of drought are high. For flood like situation those are highly positive which are in agreement with [15].  

 
10.  Conclusion 

 
IAV of GWB has been investigated with an innovative point of view in the current paper. It is established that 

SWM rainfall time series, sampled annually, is decomposed into eight statistically orthogonal modes; sum of the 
modes gives back original data to an accurate level. Seventh and eighth modes are associated with the overall 
climatic variation whilst the remaining six empirical modes are associated with narrow-band random processes 
having specified central periods and are connected to important meteorological phenomenon parameters. The 
approach indicates that first mode IMF1 accounting for highest variability, is strongly non-Gaussian and is modeled 
by GRNN technique; whereas the remaining part of the rainfall is amenable for linear auto-regressive 
representation is an interesting approach. The combination of two techniques completes the  forecasting exercise 
of the rainfall prediction is developed for GWB. The particular approach is general enough and efforts are on to 
include the analysis in other regions of India.  
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