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Abstract: Water desalination systems connected to microgrids with high penetration of renewable energy 
generation are frequently used to promote the development of remote areas. These microgrids often have power 
quality and even stability problems. This work shows that electrodialysis desalination systems can be managed as 
smart loads, that is, they can contribute to the power balance and voltage regulation of the microgrid without 
neglecting its main function of water desalination. For this, a model of multiple inputs and multiple outputs for a 
desalination system is proposed where the variables to control are the treated water concentration and the active 
and reactive powers demanded by the desalination system. Based on this model, a control law is proposed that 
allows to face the complexity of the non-linear system in a simple and precise way. The proposed control 
guarantees the low salt concentration of the drinking water and favors the energy balance of the microgrid, 
allowing better control of the power quality and greater penetration of renewable energy generation. 
Keywords: Water desalination; Renewable energies; Smart loads; Microgrids. 

 
 
1. Introduction 
 

Microgrids allow the bidirectional flow of energy, favoring the integration of renewable sources of generation, 
energy saving, cost reduction, and increased flexibility in view of greater reliability [1].  Among others, their main 
components are distributed generation units DGU (particularly renewable energy systems), energy storage devices, 
smart loads provided with techniques for consumption management, and monitoring systems and power flow 
control both for operation in connection to the network and in isolation mode.  Obviously, this last mode of 
operation (island mode) is the one that presents the most challenges from the point of view of the quality of the 
electric service [2].  In part, this is because the generation systems based on renewable energies have a very low 
or no mechanical inertia. The lack of this inertia hinders the balance of power both in normal conditions and against 
failures, boosting instability conditions. Although a proper control of the electronic converters of the DGUs allows 
emulating inertial behavior, their power range strongly restricts the inertia maximum value to emulate [3]. In 
addition, the balance between generation and load, on which the power quality of the microgrid depends, is 
strongly affected by the intermittency of renewable resources, such as photovoltaic or wind, and its availability at 
the time of greatest demand. An extreme case is that of microgrids with photovoltaic DGUs and where the 
predominant loads are electric car batteries chargers, in this case, the periods of generation and demand are almost 
opposite [4]. While the addition of storage devices mitigates the imbalance, different studies show that the required 
storage levels can be economically unfeasible today. 

In this framework, the concepts of active demand management and smart loads that can contribute to the power 
balance are reinforced [5-7]. The active management of demand (also known as Demand Response DR) consists 
of a set of actions that encourage consumers to make rational use of energy demand. These actions correspond to 
the "short term" and can be activated both based on the power quality requirements and the supply price. Among 
other actions, the DR includes switching off and on lighting groups, adjusting levels of air conditioning systems, 
and stopping non-critical manufacturing processes. When these actions are carried out gradually over non-critical 
loads NCL (loads that can tolerate voltage variations in a wide range without prejudice to users), reference is made 
to smart loads SL [8]. An SL is a combination of a non-critical load (or a group of similar non-critical loads) and 
an electronic power interface that decouples the supply. In this way, the energy consumption of the load can be 
controlled depending on the voltage (for static loads) or on the frequency (for motorized loads). Thus, the joint 
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control of the generation systems, storage systems and smart loads provide flexibility to the microgrid to guarantee 
the power balance without affecting the critical loads CL (i.e., those that require a strict voltage control and/or 
frequency) particularly if they correspond to priority loads (those whose connection must be guaranteed beyond 
possible faults).   

Smart loads can also contribute to the damping necessary to avoid oscillatory behaviors in the microgrid due to 
loads that operate at constant power which have a destabilizing effect owing to its negative incremental impedance. 
[9]  

The aforementioned reinforces the importance of evaluating and classifying different types of loads that can act 
as smart loads and thus contribute effectively to the power quality of the microgrid. Different authors have 
evaluated the capability of some typical loads, to be operated as SL. Among others, [10] consider thermal systems 
as SL.  In [11] it is studied how static loads and motors can be operated intelligently to contribute to primary 
control and even inertial response. In this line, the present work proposes a multivariable model for electrodialysis 
desalination processes and a control for operating them as smart loads and thus contribute to the power balance of 
the microgrid to which they are connected. 

 
2. Electrodialysis desalination systems in microgrids 
 

Water desalination systems connected to microgrids with high penetration of renewable energy generation are 
frequently used to promote the development of remote areas [12]. These microgrids often have power quality 
problems associated with the imbalance between generation and demand. Conventional tools to address power 
imbalances are: 

1) during the hours of excess generation:  
a) to adjust the efficiency of energy conversion systems,  
b) to charge the storage systems,  
c) power curtailment, etc. 
2) when the demand exceeds the generation:  
a) to use the energy available in the storage systems,  
b) to disconnect non-priority loads,  
c) start-up of reserve generation units, etc. 
Each of these actions has economic costs that must be evaluated for each microgrid. 
The option DR and, in particular, the control of smart loads reinforce the sharing techniques of distributed 

generation providing flexibility to manage the microgrids. Then, it is convenient to evaluate what loads can operate 
as SL.  This section evaluates how capable is a water desalination system to operate as a smart load. To this end, 
the two most important subsystems of the desalination process will be considered: the electrodialyzer (ED) and 
the pumping subsystem that feeds it. 

 
2.1 Electrodialysis process  

Figure 1a schematizes the operation of an electrodialyzer (ED) for water desalination where it is observed: the 
anode A, the cathode K and, among them, a series of membranes between which the water and the brine circulate 
(solution with a high concentration of salts).  When applying a voltage between the electrodes A and K, the cations 
with positive charges move towards the cathode through a membrane MA with negative charge being retained 
between two membranes (since the membranes are selective in the sense that they only let one type of ion pass). 
In the same way, negatively charged ions move towards the anode through the membrane MA, being retained in 
the water that circulates between said anode and this membrane. As the flow of water progresses, the ions go 
through the membranes and remain outside the main channel. The directional selectivity of the membranes allows 
the desalinated water to be isolated from the brine. To describe the desalination process, a differential volume (h, 
dx, w) of water between two membranes is shown in Figure 1b. While water circulates in the direction x of the 
drawing, there is an ion flow in the normal direction to the membranes.  This current causes a reduction of the salt 
concentration 𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑥𝑥+𝑑𝑑𝑑𝑑   in the length dx. The salt concentration of the drinking water is obtained by 
integrating dx along the length l. Then, the ion mass balance can be approximated 

 

                                                 
M

dxM
I

uh dc J dx
F A

η
== − ,     (1) 

 
where u is the flow rate per unit area, JM the mass flow, F the Faraday constant, I the current between membranes 
(electrodializer current), AM the effective area of the ion exchange membranes, the current efficiency that can 
express itself as a function of fluid velocity as  
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                                                      1/3uη αδ=                         (2) 
 
where 𝛼𝛼 and  𝛿𝛿 are kinematic parameters that are adjusted polynomially. 
 

 
Figure 1. a) Scheme of the electrodialysis process. b) Differential flow element in the ED 

  
Current I is defined by the relationship 
 

                                                                           Ve
NRI =                                                                                (3) 

 
where Ve is the voltage applied to the electrodialyzer, R is the non-linear ohmic resistance and N is the number of 
nested cells. The main ohmic component of the system is provided by the liquid solution, since the membranes 
have a very low electrical resistance. Thus, R can be expressed as a function of the concentration of the solution 
as 

 
                                                                          

M
h

AR κ=                        (4) 

 
where AM is the effective area between the membranes and M cκ = Λ  is the conductivity of the solution, being c 

the concentration, MΛ  the molar conductivity (function of the ions considered). Then replacing in Eq. (1)  
 

                                                                   
2 /3 2

02/3 ( , )
M

Q h FN
f c c l

EAβ

−
=           (5) 

 
where β αδ= , / Mu Q A= , Q  is the flow rate and 0c  the initial concentration at 0x =  and 
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  .                  (6) 

 
From the previous equations, in Figure 2 the output concentration is plotted as a function of the voltage (with 

Q as parameter) and of the flow rate (with c0 and Ve as parameters). These curves show how the voltage at the 
input terminals can be managed to reject disturbances in the initial concentration and flow variations. [13] 
 
2.2 Pumping system 

The pumping system plays an important role in the desalination process due to its energy consumption and also 
due to the effect that flow has on the salt concentration of the treated water. It basically consists of an induction 
motor (MI), the water pump and the power electronics for its control. If the motor works at constant magnetic flux, 
the torque Tm and motor power Pm result  
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= ,       (8) 

 
where ϕm is the magnetic flux in the air gap, ωsl the slip frequency, Lr the dispersion inductance, Rr the rotor 
resistance and p the number of pole pairs. Then, the dynamic equation of the pump results 

 
                                                                      ( ) /p m p TT T J=Ω − ,       (9) 

 
where the pump torque is a quadratic function of the pump speed Ωb 

 
                                                               ( )22 2 2 /p p p p mpT k k pω= Ω = ,   (10) 

 
where kb is the constant of the pump and ωp the angular frequency equivalent to the speed of the pump. 
 

 
                                                  a)                                                                          b) 

 
(c) 

Figure 2. a) Characteristic curves c-V with Q as parameter; b) and c) Characteristic curves c-Q with the initial 
concentration C0 and the voltage Ve as parameters. 
 
2.3 Total power of the desalination system 

The active y reactive powers demanded by the desalination system is the addition of the two electrodialysis and 
pumping subsystems  

 
                                                               P VI TT ED p m pP P= + = + Ω           (11) 

                                                                      QT ED pQ Q= + .  (12) 

 
3. Control proposal for the desalination system as SL 

 
Desalination systems are generally controlled to purify a daily volume of water with a salt concentration below 

a reference level cr. This must be ensured regardless of the salinity of the incoming salt water, its flow rate and the 
power quality of the electrical grid. In this work, the desalination system (electrodialyzer, pumping system, power 
converters) is controlled in a different way to meet a more complex goal. The desalination system is considered as 
a potential smart load to guarantee the stability of the microgrid to which it is connected. That is, the input power 
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of the desalination system is regulated according to the state of the power balance of the microgrid, but always 
preserving the quality of the desalinated water (c<cr). 

In this context, the desalination system is seen as a multivariable system with three inputs and three outputs,  
where the variables to be controlled are:  

1) concentration c; 
2) desalination system power PT; 
3) QT reactive power at the input of the desalination system. 
Figure 3 shows the proposed control scheme. It corresponds to a decentralized control with three control loops 

(with feedback of the states and integral action on the errors). The upper loop corresponds to the concentration 
control. The other two to the active and reactive powers of the complete system. Through a droop curve (“positive 
droop”), variations in power consumption PT are stated to help the balance between generation and load. The 
positive slope of this droop curve P-f (active power - frequency) indicates the degree of participation of the 
electrodialysis system in the active management of microgrid loads. The control of the AC/DC converters that 
regulates the voltage on the electrodialyzer and AC/AC of the pumping system is controlled incorporates the 
control of reactive power in its input terminals to collaborate in this way in the regulation of the microgrid voltage. 
To define the degree of reactive power contribution of the load to the network, the reference Qr can also be defined 
from a positive slope droop curve Q-Vg (reactive power - voltage). 

For decentralized control, it is considered that: 
1) vector control techniques in electronic drives allow decoupling the active power control from the reactive 

power; 
2) the open-loop system has a strong coupling between the pumping system (flow rate) and the output 

concentration (c). The power of the pump is controlled through its speed which affects the flow with a cubic law. 
In turn, flow affects concentration as indicated in Figure 2., also non-linearly. 
 

 
Figure 3. Control of the desalination system as SL 

 
Since the concentration loop only includes electrical variables, its controller can be designed to present a rapid 

response compared to the pump dynamics. Thus, the speed of the pump (hence its flow) can be seen as a slow 
disturbance for the concentration loop, allowing the loops to be considered decoupled in high frequency. Then, an 
integral action of the decentralized controller guarantees the concentration in cr value faced quasi-constant flow 
changes concerning the dynamics of the concentration loop. 

The reference of the second loop corresponds to the total power PT of the desalination system (motor-pump + 
electrodialyizer) and is defined from a droop curve that determines the Active Demand Management. That is to 
say, 

1) when the grid frequency falls, the power reference of the desalination system (motor-pump + electrodialyzer) 
is reduced according to the droop curve resulting in a reduction in the speed of rotation of the pump which reduces 
the flow rate of water sent to the electrodialyzer; 

2) at a lower flow through the electrodialyzer, the level of salt concentration of the potable water is unnecessarily 
reduced below the required value, which enables (through the upper loop) to reduce the voltage of the 
electrodialyzer to reduce its power, but always guaranteeing output concentration. 

The previous actions reduce both the power of the pumping system and that of the desalination system, 
preserving the concentration tolerated at the outlet of the electrodialyzer. Said power reduction tends to contribute 
to the restoration of the network balance while preserving the power quality for critical loads. 
 
4. Concentration control 

 
As discussed in the previous section, in this proposal, the total power control PT is exercised through the 

converter of the pumping system that sees the power of the electrodialyzer as a soft disturbance (disturbance that 
contributes to the control of the total power). The converter itself also controls the reactive power of the pumping 
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system Qp (part of QT). The control of this converter is done through classic vector control techniques. On the other 
hand, the electrodialyzer converter is responsible for concentration control and contributes to the total reactive 
power in QED. 

Because the control of the pumping system can be carried out by conventional techniques, in this section we 
focus our attention on the control of the electrodialyzer converter, that is to say, the concentration c and QED. This 
loop must guarantee water quality beyond the flow changes resulting from the requirements for the power balance. 
The action on the electrodialyzer is exerted through an AC-DC converter (Fig. 4) that responds to the following 
equations: 

 

                                                       1
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1 1a a a a

b b b b

c c c c

i i v v
d Ri i v v
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i i v v
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  (13) 

                                                         ( )e
C e e

dvC i i v
dt

= − −             (14) 

 
where va, vb, vc are the network voltages and the voltages va1, vb1, vc1 are established from the state of the switches. 
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with [𝑢𝑢1 𝑢𝑢2 𝑢𝑢3]𝑇𝑇 = [𝑠𝑠𝑤𝑤1 − 𝑠𝑠𝑤𝑤4 𝑠𝑠𝑤𝑤2 − 𝑠𝑠𝑤𝑤5 𝑠𝑠𝑤𝑤3 − 𝑠𝑠𝑤𝑤6]𝑇𝑇. Thus, while the states of the swi switch can take 
the values 0 (open switch) and 1 (closed switch), the ui signals can take values 1 and -1 which is more convenient 
for the purposes of the analysis. Using the transformations in the Appendix, the dynamic equations of the currents 
in a reference frame dq rotating at the grid frequency ωe are 
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Figure 4. Detail of the electrodialyzer and converter control 

 
The following sliding control surfaces are proposed for the control of the AC / DC converter: 
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The relative degree 1 of the switching functions is a necessary condition to reach the sliding mode on the 

surfaces si = 0. The surface s1 = 0 is intended for getting the concentration of salts in the drinking water to converge 
to the reference cr.  The new variable 
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it is included in the surface s1 to reach zero steady-state error beyond the value of the flow rate Q involved in 
the DR. The selection of feedback constants ki can be done to assign closed-loop dynamics [14] under the 
assumption of a rapid dynamic between ie and ve. The rate over s2 = 0 requires the converter to operate with a unity 
power factor. The PED power is controlled together with Pp to ensure the PT power imposed by the droop by the 
AC/AC converter. Control surfaces can be rewritten as 

 

                                                       1

2

( )
( )

ref
d d d

dq ref
q q q

s s I t i
S

s s I t i
 = − 
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,   (19) 
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 .  (20) 

 
From this change, the problem of sliding mode (SM) remains in terms of reaching two surfaces Sdq = 0 for 

currents id and iq, where the reference for id is obtained from an external loop of the concentration control. In terms 
of sd and sq, the switching that guarantees the SM is a problem already solved in the literature [15] that is reduced 
to propose the following switching strategy: 
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and D is defined in the Appendix. This switching strategy guarantees the SM in the region of the state plane that 
it verifies 
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The equation (23) shows the convenience of choosing the ve /L ratio to enlarge the region of attraction. 
The swi states of the switches are obtained from the transformation of the ui signals: 
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11 1, ,
2 2 2

1 , 1 , 1

uu usw sw sw

sw sw s sw sw sw

++ +
= = =

= − = − = −

          (25) 

 
Figure 5 schematizes the concentration control loop including the dq conversion and the proposed control 

surface. The active power control loop (not indicated in the figure) affects the electrodialyzer input flow, having 
two effects. On the one hand, the concentration loop reacts to the change in flow rate that is seen as a slow 
disturbance, and on the other hand modifies the power consumed by the ED, power that added to the pumping 
power is controlled by the power control loop. 
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Figure 5. MIMO controller concentration loop 

 
5. Analysis and discussion 

 
In section 2 it was shown that a desalination system can operate with variable flow without affecting the salt 

concentration of the outlet water. For this, it is necessary to act on the input voltage not only to reject disturbances 
in the concentration of the input saltwater but also as a function of the flow. Although that the variable flow 
operation affects the liters of water treated per unit of time, this is not an impediment for this type of operation 
since the production is integrated over time through its storage in distribution tanks. Indeed, traditionally 
desalination systems are sized to guarantee daily or weekly water production. Based on the foregoing, this work 
has proposed to operate desalination systems based on electrodialysis as smart loads that, without neglecting their 
main function of desalinating water, can provide control actions that contribute not only to the stability but also to 
improving the quality of power of the microgrid to which they are connected. 

Beyond the potential of these systems to be operated as intelligent loads, a multi-objective control is required 
to allow it. Control with these characteristics differs substantially from the conventional SISO control for constant 
flow and presents important challenges due to the non-linear characteristics of the system, where now three 
variables are controlled. The MIMO control proposal based on concepts of sliding modes allows overcoming, in 
a simple way, the complexity of the non-linear problem and the disturbances due to the uncertainty of the initial 
salinity of the water to be processed. Indeed, the control surfaces proposed for the control by sliding modes not 
only guarantee the quality of the treated water but also make it possible to contribute to the active power balance 
of the microgrid and to regulate its voltage from the reactive power control. 

Figure 6 shows the benefits of operating the desalination system as SL. In part a) of the figure you can see in a 
thin line the profile of available power in a micro-network (conventional generation of base, wind and solar energy) 
and in thick line the demand, observing that between 14.45 and 19.45 hours demand exceeds available power. Part 
b) of the figure shows the power consumed by the desalination system operating as SL, guaranteeing that at no 
time the power demanded exceeds the available energy (Fig. 6c). Finally, it can be seen in the lower part of the 
figure that the concentration of drinking water is not affected by the reduction in power consumption. 

                         
Figure 6. a) Available and demanded power. b) Power in the ED operating as SL. c) Available and demanded 
power with the ED operating as SL. d) Concentration of drinking water. 
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6. Conclusions 
 
Desalination processes and alternative energies are allowing developing remote regions where 1) only saltwater 

is available and 2) the supply of electrical energy is non-existent or is carried out through weak networks. 
Frequently, they are integrated to microgrids that must face power imbalances problems without affecting critical 
loads. In this context, the incorporation of storage systems and the operation noncritical load according to the 
demand (demand response) provide flexibility for the microgrid control. A particular way to implement demand 
response ideas is through smart load concepts. In this context, this paper has demonstrated the viability of 
electrodialysis desalination processes to operate as smart loads, i.e. to contribute to the balance of power in a 
microgrid, without affecting the quality of the treated water.  Un MIMO model was proposed to this end where 
the controlled variables are the output concentration, the consumed power and the input reactive power.  For this, 
a MIMO model was proposed where the controlled variables are the output concentration, the consumed power, 
and the input reactive power. The model shows that the system can be managed at variable flow and voltage to 
regulate the concentration, unlike the conventional way in which they are operated, i.e. as constant power loads. 
But the model also reflects the non-linear complexity of the MIMO system, whose control as smart loading 
represents a challenge. The proposed control scheme, based on sliding mode control concepts, shows a simple and 
precise way to address the complexity of system control. Although the quantification of the technical effect of the 
proposal must be done on each microgrid, it can be affirmed that the control of desalination systems (as well as 
other loads) as smart loads contributes to improving the power balance. Hence, correctly controlled, they have the 
capability of assisting to the power quality of the microgrid. Additionally, smart management of the electrodialysis 
desalination systems also can reduce investment in energy storage systems required for conventional microgrid 
assistance and/or increasing the penetration of alternative energy generation systems. 
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Appendix 

The transformation to the dq framework is: 
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